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ABSTRACT

We propose a ghost-free high dynamic range (HDR) image synthe-
sis algorithm by unrolling low-rank matrix completion. By exploit-
ing the low-rank structure of the irradiance maps from low dynamic
range (LDR) images, we formulate ghost-free HDR imaging as a
general low-rank matrix completion problem. Then, we solve the
problem iteratively using the augmented Lagrange multiplier (ALM)
method. At each iteration, the optimization variables are updated by
closed-form solutions and the regularizers are updated by learned
deep neural networks. Experimental results show that the proposed
algorithm provides better image qualities with fewer visual artifacts
compared to state-of-the-art algorithms.

Index Terms— High dynamic range imaging, unrolled opti-
mization, low-rank matrix completion.

1. INTRODUCTION

The advancements in digital imaging technology have enabled the
capture of high-quality images. However, because the dynamic
range of natural scenes often exceeds those of the sensors [1], cap-
tured images contain under- and over-exposed regions, degrading
image quality. A common approach to overcoming the limited dy-
namic range of the sensors is to synthesize a high dynamic range
(HDR) image by merging multiple low dynamic range (LDR) im-
ages taken with different exposure times. However, camera or object
motions between different exposures cause ghosting artifacts, which
degrade the quality of the synthesized images. Therefore, due to its
practical importance, a lot of research has been carried out to syn-
thesize high-quality HDR images without ghosting artifacts, which
is called ghost-free HDR imaging.

Recent ghost-free HDR imaging algorithms can be broadly cat-
egorized into model-based and learning-based approaches. Model-
based approaches are based on ghosting artifacts generation models
and have developed algorithms to remove the artifacts. For example,
in [2, 3], ghost region detection was employed to alleviate contri-
butions of the region to the synthesized HDR image. In [4, 5], input
LDR images are first aligned and then are merged to provide an HDR
image. Based on the assumption of a static underlying scene, rank
minimization has been employed for HDR synthesis [6, 7]. Despite
their theoretical completeness, rank minimization-based approaches
may fail if the number of input LDR images is insufficient. A com-
mon disadvantage of these approaches is that the synthesis perfor-
mance becomes degraded if the models inaccurately fit real-world
scenarios.

Inspired by the recent success of deep learning in various com-
puter vision and image processing tasks, several deep learning-based
HDR image synthesis algorithms have been developed [8–10].
These algorithms employ convolutional neural networks (CNNs)
that take a set of multiple LDR images and produce an HDR image

in an end-to-end manner. Such approaches can overcome the limita-
tions of hand-crafted models through the learned high-dimensional
features from training data. However, the performance of learning-
based approaches are affected by the quality and diversity of training
data [11]. Moreover, due to their black box nature, it is usually dif-
ficult to interpret the behaviors of CNNs.

Recently, a novel technique called algorithm unrolling [12] was
developed to connect model-based iterative algorithms to CNN ar-
chitectures, overcoming their weaknesses while taking strengths.
Specifically, an iterative algorithm is expanded into layers of a
deep network, in which each layer represents an iteration of the
algorithm. As data flow through CNN is analogous to running
the iterative algorithm, the learning-based algorithms inherit strong
theoretical bases from the model-based algorithms. Because of its
interpretable CNN architectures from reasonably sized training sets,
algorithm unrolling has been applied in various image processing
tasks [13–15].

In this work, we propose a ghost-free HDR image synthesis
algorithm by unrolling low-rank matrix completion that takes ad-
vantage of benefits from both model-based and learning-based ap-
proaches. First, we formulate ghost-free HDR imaging as a gen-
eral matrix completion problem, assuming linear dependency among
LDR images. Then, we solve the problem using the augmented La-
grange multiplier (ALM) method by reformulating it into a series
of subproblems and iteratively solving them. At each iteration, the
optimization variables are updated by closed-form solutions, while
the regularizes are updated by learned CNNs. Experimental results
show that the proposed algorithm achieves higher-quality HDR im-
ages with fewer visual artifacts compared to state-of-the-art algo-
rithms [7–10].

The remainder of this paper is organized as follows: Section 2
describes the proposed HDR image synthesis algorithm, and Sec-
tion 3 discusses experimental results. Finally, Section 4 concludes
this work.

2. PROPOSED ALGORITHM

In this section, we formulate HDR image synthesis as a rank mini-
mization problem and then solve it using an unrolled optimization.

2.1. Problem Formulation

Given a set of images taken with different exposure times, we syn-
thesize an HDR image while suppressing ghosting artifacts caused
by moving objects. First, the images are warped to the reference im-
age, which is at the middle of the sequence, using SIFT-Flow [16],
producing a set of warped images I = {vec(I1), . . . , vec(In)},
where vec(Ii) ∈ Rm denotes a vector of pixel values and n is the
number of images. Then, we construct the observed irradiance ma-



trix D = [vec(H1), . . . , vec(Hn)], where vec(Hi) denotes the ir-
radiance vector for the ith warped image.

The HDR synthesis then can be formulated as a low-rank matrix
completion [7]. Specifically, based on the assumption that the scene
irradiance matrix D can be decomposed into the background and
foreground components X and E, respectively, and that the back-
ground is static and the foreground object is small, X has a low
rank and E is a sparse matrix. Further, due to under- and over-
exposed regions in input images, only a limited number of pixels
in a set Ω is observed. Therefore, using the truncated nuclear norm
∥X∥r =

∑min(m,n)
i=r+1 σi(X), where σi(X) is the ith largest singular

value of X, as an approximation for the matrix rank [17], the esti-
mation of the low-rank scene background matrix for ghost-free HDR
image can be approximately formulated as [7]

minimize
X,E

∥X∥r + λ∥E∥1
subject to PΩ(X+E) = PΩ(D),

(1)

where λ controls the relative importance between the two terms, and
PΩ denotes a sampling operator in the observed region Ω as

[PΩ(X)]ij =

{
Xij , if (i, j) ∈ Ω,

0, otherwise.
(2)

Based on the assumption that the background scene is static, we fix
r in (1) to 1 in this work.

Note that, in (1), the models for X and E, i.e., low-rankness of
the scene and sparse error due to inaccurate warping, respectively,
are made based on the assumptions. However, these hand-crafted
priors may fail to accurately capture all features of the scene and er-
rors, such as color distribution or underlying structures. To overcome
the limitation of the models, we add two general regularization terms
f(·) and g(·) for X and E, respectively, which are learned from data.
We also consider noise in the observed pixels for real-world acquisi-
tion as done in [7], i.e., PΩ(X+ E+N) = PΩ(D), where N is a
noise matrix. Then, by introducing slack variables, the optimization
problem in (1) is rewritten as

minimize
X,E,S

∥X∥r + λ∥E∥1 + f(X) + g(E)

subject to X+E+ S = PΩ(D),
∥PΩ(S)∥F ≤ δ,

(3)

where S is a matrix of slack variable, and δ ≥ 0 is the noise level.
In (3), we define the observed region Ω as a set of reliable pixel

locations in terms of pixel value and structure information. First, we
define the set of well-exposed pixel locations Ωe as

Ωe = {(i, j) | 0.10 ≤ I(i, j) ≤ 0.99}. (4)

Next, we employ the structure similarity index (SSIM) [18] to con-
sider the structural information, as it evaluates the degree of simi-
larity between two images. Specifically, we define the set of well-
warped pixel locations Ωw based on the SSIM score computed be-
tween the reference and warped images, given by

Ωw = {(i, j) | SSIM(I(i, j)) ≥ 0.90}. (5)

An SSIM score is computed for each pixel using an 11×11 window.
Then, we define the observed region as Ω = Ωe ∩Ωw.

2.2. Iterative Solutions

We employ the ALM method to solve the optimization in (3). To
this end, we first reformulate it to split the optimization variables
into two parts by introducing the auxiliary variables P and Q as

minimize
X,E,S,P,Q

∥X∥r + λ∥E∥1 + f(P) + g(Q)

subject to P = X,Q = E,
X+E+ S = PΩ(D),
∥PΩ(S)∥F ≤ δ.

(6)

Then, we define the augmented Lagrangian function L for (6) as

L(X,E,S,P,Q,Λ,Γ,Φ) = ∥X∥r + λ∥E∥1 + f(P) + g(Q)

+ ⟨Λ,PΩ(D)−X−E− S⟩+ µ

2
∥PΩ(D)−X−E− S∥2F

+ ⟨Γ,X−P⟩+ α

2
∥X−P∥2F + ⟨Φ,E−Q⟩+ β

2
∥E−Q∥2F ,

(7)

where µ, α, and β > 0 are penalty parameters, Λ, Γ, and Φ ∈
Rm×n are Lagrange multiplier matrices, and ⟨A,B⟩ = tr(ABT )
denotes the matrix inner product.

Solutions to the optimization problem in (6) can be obtained
by minimizing the augmented Lagrangian function L in (7). More
specifically, we employ the alternating direction method of multi-
pliers [19], which split the optimization over variables X, E, S, P,
and Q and multipliers Λ, Γ, and Φ and then solve them one-by-one
iteratively. We describe how each subproblem is solved.

X-subproblem: In the first step, we update X as

Xk+1 = arg min
X

L(X,Ek,Sk,Pk,Qk,Λk,Γk,Φk)

= arg min
X

∥X∥r +
√
µk + αk

2
∥X−ΨX,k∥2F , (8)

where ΨX,k = (µk + αk)
−1(Λk + µkPΩ(D) − µkEk −

µkSk + αkPk − Γk). We employ the partial singular value
thresholding (PSVT) operator [6] to solve the problem in (8).
Specifically, given the singular value decomposition of a matrix
A = UΣVT , where Σ = diag(σ1, . . . , σmin(m,n)), the PSVT
operator Pr,τ is defined as Pr,τ (A) = U(Σ1 + Sτ (Σ2))V

T ,
where Σ1 = diag(σ1, . . . , σr, 0, . . . , 0), Σ2 = diag(0, . . . , 0,
σr+1, . . . , σmin(m,n)), and Sτ (·) denotes the element-wise soft-
thresholding operator [20] for τ > 0; that is, [S(A)]ij = sign(Aij)·
max{|Aij | − τ, 0}. Then, the closed-form solution to (8) is given
by [6]

Xk+1 = Pr, 1√
µk+αk

(ΨX,k) . (9)

E-subproblem: Next, we estimate E by solving

Ek+1 = arg min
E

L(Xk+1,E,Sk,Pk,Qk,Λk,Γk,Φk)

= arg min
E

λ∥E∥1 +
√
µk + βk

2
∥E−ΨE,k∥2F , (10)

where ΨE,k = (µk+βk)
−1(Λk+µkPΩ(D)−µkXk+1−µkSk+

βkQk −Φk). The closed-form solution to (10) can be obtained by
the soft-thresholding operator [20], given by

Ek+1 = S λ√
µk+βk

(ΨE,k) . (11)



Fig. 1. Overview of the proposed unrolled optimization algorithm for HDR image synthesis. The green and orange blocks in P-Net and Q-Net
indicate the convolutional layers and ReLU layers, respectively.

S-subproblem: We also update S by solving the following op-
timization problem.

Sk+1 = arg min
∥PΩ(S)∥F≤δ

L(Xk+1,Ek+1,S,Pk,Qk,Λk,Γk,Φk)

= arg min
∥PΩ(S)∥F≤δ

∥S−Yk∥2F , (12)

where Yk = PΩ(D) − Xk+1 − Ek+1 + µ−1
k Λk. It was shown

in [7] that the closed-form solution to (12) is given by

Sk+1 = Y(Yk) = PΩc(Yk) +min

{
δ

∥PΩ(Yk)∥F
, 1

}
PΩ(Yk).

(13)
P- and Q-subproblems: Then, P and Q are updated as

Pk+1 = arg min
P

L(Xk+1,Ek+1,Sk+1,P,Qk,Λk,Γk,Φk)

= arg min
P

f(P) +

√
αk

2
∥P− (Xk+1 + α−1

k Γk)∥2F , (14)

Qk+1 = arg min
Q

L(Xk+1,Ek+1,Sk+1,Pk+1,Q,Λk,Γk,Φk)

= arg min
Q

g(Q) +

√
βk

2
∥Q− (Ek+1 + β−1

k Φk)∥2F . (15)

Because the functions f(·) and g(·) are learned from data and thus
nondeterministic, we develop CNNs that obtain the solutions to the
optimization problems in (14) and (15). We denote the CNNs at the
kth iteration as P-Netk and Q-Netk. Then, we represent the closed-
form solutions to the optimization problem in (14) and (15) as

Pk+1 = P-Netk
(
Xk+1 + α−1

k Γk

)
, (16)

Qk+1 = Q-Netk
(
Ek+1 + β−1

k Φk

)
. (17)

P-Netk and Q-Netk are equivalent to the proximal operators corre-
sponding to the regularization terms. During training, the weights of
P-Netk and Q-Netk are adjusted accordingly to their input matrices
Xk+1 + α−1

k Γk and Ek+1 + β−1
k Φk, respectively, to produce the

optimal solutions Pk+1 and Qk+1. The details of P-Net and Q-Net
are described in Section 2.3.

Finally, the Lagrange multiplier matrices are updated as

Λk+1 = Λk + µk(PΩ(D)−Xk+1 −Ek+1 − Sk+1), (18)
Γk+1 = Γk + αk(Xk+1 −Pk+1), (19)
Φk+1 = Φk + βk(Ek+1 −Qk+1). (20)

2.3. Implementation

Fig. 1 shows an overview of the proposed unrolled optimization
algorithm for HDR image synthesis. An observed matrix, X1 =
PΩ(D), is fed as input and all the other optimization variables are
initialized to zeros. The iterative algorithm is unrolled into N blocks,
and each block updates the optimization variables for subproblems
in the previous section at the corresponding iteration. The resulting
HDR image is synthesized by applying a 1 × 1 convolutional layer
to the columns of the estimated background irradiance maps X̂.

Note that P is a regularization variable for the final result X.
Therefore, we use a series of convolutional layers and the rectified
linear unit (ReLU) layers for extensive feature extraction for P-Net.
Each convolutional layer has 64 filters of size 3 × 3. On the other
hand, Q regularizes the structure of the error component E, which
can be regarded as residual information. Thus, we employ a residual
CNN for Q-Net. Specifically, the structure of Q-Net is identical to
that of P-Net except for a skip connection. Fig. 1 shows the detailed
structures of P-Net and Q-Net.

To train P-Net and Q-Net, we compute the synthesis loss LHDR

as the L1-norm of the difference between a ground-truth HDR image
Hgt and a synthesized HDR image Ĥ, given by

LHDR = ∥l(Ĥ)− l(Hgt)∥1, (21)

where l(·) denotes the irradiance value conversion to the perceptu-
ally uniform domain [21].

3. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed HDR image synthesis
algorithm on the HDR-HDM dataset [22]. We randomly chose three
consecutive frames in the videos, then generated multi-exposure im-
ages for each set using exposure biases {−3, 0,+3}. We finally
obtained 187 multi-exposure image sets with ground-truth HDR im-
ages as the middle images. We then randomly selected 132 sets for
training and 55 sets for testing.

We compare the performance of the proposed algorithm with
those of TNNM-ALM [7], Kalantari and Ramamoorthi’s algo-
rithm [8], Wu et al.’s algorithm [9], and AHDRNet [10]. While
TNNM-ALM is a rank minimization model-based algorithm, the
others are deep learning-based algorithms. The source codes for
these algorithms are provided by the respective authors, and they
were retrained with the new dataset. We used the tone-mapping
technique [23] to print the synthesized HDR images. The number of
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Fig. 2. Comparison of the HDR synthesis results. (a) Ground-truth, and results of (b) TNNM-ALM [7], (c) Kalantari and Ramamoorthi’s
algorithm [8], (d) Wu et al.’s algorithm [9], (e) AHDRNet [10], and (f) the proposed algorithm. The second and fourth rows show the
magnified parts for the red rectangles in the first and third rows, respectively.

Table 1. Quantitative comparison of the HDR synthesis performance
using three objective quality metrics: PU-PSNR, PU-MSSSIM, and
HDR-VDP.

PU-PSNR PU-MSSSIM HDR-VDP

TNNM-ALM [7] 34.84 0.9640 66.32
Kalantari [8] 37.96 0.9894 66.55
Wu et al. [9] 43.11 0.9950 73.50

AHDRNet [10] 41.08 0.9886 71.78
Proposed 48.80 0.9983 74.00

unrolled iterations N is set to 10. The parameters λ and δ in (6) and
µk, αk, and βk in (7) are all learned from training data.

Fig. 2 compares the synthesis results and their detailed parts on
the test images. TNNM-ALM [7] in Fig. 2(b) yields strong color
artifacts. This is because, while rank minimization requires large
number of columns in the data matrix to provide high-quality results,
only three columns (exposures) are used in this work. In Fig. 2(c),
Kalantari and Ramamoorthi’s algorithm [8] fails to reconstruct the
image details in the saturated regions because it learns the weights
for averaging warped radiance values. Wu et al.’s algorithm [9] and
AHDRNet [10] in Figs. 2(d) and (e), respectively, provide better re-
sults. However, the results lose some textures and show color differ-
ences from ground-truth, since end-to-end learning infers them from
learned features, which may be different from those in the ground-
truth. Furthermore, AHDRNet yields ghosting artifacts in the blue
rectangle in the fourth row due to incorrect estimation of the atten-
tion map. In contrast, the proposed algorithm in Fig. 2(f) faithfully
synthesizes HDR images without texture losses and color artifacts
by strictly constraining low-rank priors with learned regularizers.

We also perform objective evaluation of the proposed algorithm
in comparison with the conventional algorithms using three qual-

ity metrics: perceptually uniform extension to PSNR (PU-PSNR)
and multi-scale structural similarity index (PU-MSSSIM) [24], and
high dynamic range visible difference predictor (HDR-VDP) [25].
Table 1 quantitatively compares the synthesis performance of the
proposed algorithm against those of the conventional algorithms for
the test images. For each metric, a higher score indicates better re-
sults. As the proposed algorithm effectively reconstructs missing
information using low-rank priors and learned regularizers, it pro-
vides significantly higher PU-PSNR and PU-MSSSIM scores than
the conventional algorithms. Also, the proposed algorithm achieves
the best performance in terms of the HDR-VDP scores, providing
the least perceptual differences.

4. CONCLUSIONS

We developed a ghost-free HDR imaging algorithm by unrolling
low-rank matrix completion to take advantage of both model-based
and learning-based approaches. We first formulated a general
low-rank matrix completion problem with advanced regularizers,
and then solved it efficiently by employing an iterative algorithm.
Specifically, the proposed algorithm comprises a series of blocks,
corresponding to each iteration, where the optimization variables are
updated by closed-form solutions and the regularizers are updated
by learned CNNs. Experimental results demonstrated that the pro-
posed algorithm achieves higher HDR image synthesis performance
than state-of-the-art algorithms.
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