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Abstract—The major challenge in high dynamic range (HDR)
imaging for dynamic scenes is suppressing ghosting artifacts
caused by large object motions or poor exposures. Whereas recent
deep learning-based approaches have shown significant synthesis
performance, interpretation and analysis of their behaviors are
difficult and their performance is affected by the diversity of
training data. In contrast, traditional model-based approaches
yield inferior synthesis performance to learning-based algorithms
despite their theoretical thoroughness. In this paper, we propose
an algorithm unrolling approach to ghost-free HDR image
synthesis algorithm that unrolls an iterative low-rank tensor
completion algorithm into deep neural networks to take advan-
tage of the merits of both learning- and model-based approaches
while overcoming their weaknesses. First, we formulate ghost-free
HDR image synthesis as a low-rank tensor completion problem
by assuming the low-rank structure of the tensor constructed
from low dynamic range (LDR) images and linear dependency
among LDR images. We also define two regularization functions
to compensate for modeling inaccuracy by extracting hidden
model information. Then, we solve the problem efficiently using
an iterative optimization algorithm by reformulating it into a
series of subproblems. Finally, we unroll the iterative algorithm
into a series of blocks corresponding to each iteration, in which
the optimization variables are updated by rigorous closed-form
solutions and the regularizers are updated by learned deep neural
networks. Experimental results on different datasets show that
the proposed algorithm provides better HDR image synthesis
performance with superior robustness compared with state-
of-the-art algorithms, while using significantly fewer training
samples.

Index Terms—High dynamic range (HDR) imaging, low-rank
tensor completion, algorithm unrolling.

I. INTRODUCTION

ADVANCEMENTS in digital imaging technology have
enabled the capture of high-quality images. However,

the dynamic ranges of natural scenes often exceed those of
existing cameras [1]; thus, captured images contain under-
and over-exposed regions, which degrade the overall image
quality. To overcome the limited dynamic ranges of cameras,
high dynamic range (HDR) imaging technologies have been
developed to capture and reproduce the full range of luminance
in natural scenes to improve users’ visual experience [2].
One such approach is developing specialized HDR camera
systems [3], [4]; however, such systems are often complex and
expensive, which limits their practical use. Instead, software-
based techniques are more prevalent, in which algorithms
are used to reproduce HDR images from low dynamic range
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(LDR) images captured by conventional cameras. A common
approach, called multi-exposure fusion (MEF), merges multi-
ple LDR images taken with different exposure times to synthe-
size a single HDR image. However, camera or object motions
between different exposures generate ghosting artifacts, which
degrade the synthesized image quality. Therefore, it is essential
to develop an MEF algorithm that can produce ghost-free HDR
images; thus, various algorithms have been proposed.

Early attempts for ghost-free HDR imaging are based
on motion models and can be broadly categorized into
two groups: motion-rejection-based and alignment-based al-
gorithms. Algorithms in the first category attempt to detect
motion regions in the input LDR images and reduce their
contributions in the fusion process [5]–[10]. However, because
these algorithms assume sufficiently small motion regions,
they may generate visible artifacts in regions with large
motions caused by information loss in the input images. By
contrast, alignment-based algorithms employ correspondence
estimation to align motion regions in the input LDR images
before fusion [11]–[15]. Despite their ability to handle large
motions, these algorithms may yield artifacts in the region
with significant information loss, for example, caused by poor
exposure or occlusion.

Deep learning-based algorithms, which employ convolu-
tional neural networks (CNNs) to establish end-to-end net-
works that output HDR images directly from input LDR im-
ages, have recently been actively developed [16]–[26]. Owing
to the powerful ability of CNNs to learn visual features, deep
learning-based algorithms can restore scene irradiance with
higher quality than the aforementioned algorithms. These deep
learning-based algorithms are based on a common strategy:
CNNs are used to encode input LDR images to the feature
domain, and different CNNs subsequently merge and decode
the feature maps back to the image domain. However, the
performance of deep learning-based algorithms is limited by
the lack of diversity in training data [27]. Furthermore, it
is difficult to analyze the behaviors of CNNs because their
architectures are often empirically designed, thereby leading
to black box models. Note, however, that interpretability is an
essential factor in several applications [28].

Recently, a novel technique, called algorithm unrolling [29],
[30], was developed to overcome the weaknesses of both the
aforementioned model- and learning-based approaches while
leveraging their merits. Specifically, in algorithm unrolling,
iterations of model-based iterative algorithms are implemented
as a series of layers in deep networks, connecting model-based
algorithms with deep networks. Hence, deep networks become
interpretable and more theoretically sound as they inherit the
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benefit of mathematical models. Because of its advantages in
performance and generalization ability, algorithm unrolling has
recently been applied in various image processing tasks [30]–
[34]. In particular, Mai et al. [21] adopted an algorithm
unrolling strategy for the first time for HDR imaging based on
low-rank matrix completion by building an explainable deep
network. Their algorithm explicitly considers ghost regions
during the fusion process by strictly following the constraints
of the mathematical model, while lost information in ghost
regions is restored by the learned CNNs. However, because it
processes each color channel independently using matrices, it
cannot fully exploit the correlations between color channels
and exposures, degrading the synthesized image quality.

In this work, to mitigate the aforementioned limitations of
the state-of-the-art algorithms and better exploit the correla-
tions among color channels and exposures, we propose an
algorithm unrolling approach to HDR imaging based on low-
rank tensor completion, called LRT-HDR (low-rank tensor-
based HDR). First, we formulate HDR image synthesis as
a low-rank tensor completion task based on the assumption
of the linear dependency of the background irradiance with
respect to exposure times. A low-rank tensor model better
exploits the correlations between color channels and under-
lying high-dimensional scene structures than matrix models
and is more theoretically rigorous and robust [8]–[10], [15]
than other model-based algorithms. Nevertheless, because the
approximation rather than the precise determination of the
underlying structures of the scene by the low-rank model
may cause inaccuracies in the model; thus, we define two
general regularization functions, which extract hidden model
information, to compensate for these inaccuracies. Then, we
solve the optimization iteratively by employing an unrolling
approach; in each iteration, the optimization variables and the
regularizers are updated by closed-form solutions and learned
deep networks, respectively. By incorporating the theoretical
foundation from the low-rank model with deep learning-
based compensation for the modeling inaccuracies, the pro-
posed algorithm is inherently interpretable and achieves better
generalizability than fully deep learning-based approaches,
whose networks are heavily dependent on learned features and
difficult to analyze. More specifically, the proposed algorithm
requires significantly fewer training samples, equivalent to the
amount of information learned from training data, than fully
deep learning-based algorithms, since the synthesized image is
less dependent on learned features, as will be experimentally
verified.

To summarize, we make the following contributions.
• We formulate the MEF-based HDR image synthesis as

low-rank tensor completion by representing a set of
irradiance maps from the input LDR images and the
moving foreground objects as a low-rank tensor and a
sparse tensor, respectively, assuming a underlying static
background. In addition, we define two regularization
functions to compensate for inaccurate modeling. We
then iteratively solve the optimization problem using the
augmented Lagrange multiplier (ALM) method.

• We develop an algorithm unrolling approach to the
ALM-based iterative algorithm to solve the optimization

problem. Specifically, we implement iterations of the
algorithm as a series of blocks in which the optimization
variables are updated via the closed-form solutions and
the regularizers are updated by CNNs. Therefore, the pro-
posed LRT-HDR inherits the low-rank model’s theoretical
foundation, thereby making it inherently interpretable.

• We experimentally demonstrate that the proposed LRT-
HDR algorithm can synthesize HDR images with higher
quality than state-of-the-art algorithms [10]–[12], [16]–
[21] by overcoming their limitations, while using signifi-
cantly fewer training samples. Furthermore, we show that
LRT-HDR exhibits a superior generalization ability, as it
provides the best overall results for datasets with different
properties from the training dataset.

Note that this work is an extension of our conference
paper [21], in which preliminary results have been presented
in part. In this paper, we develop a new low-rank tensor
completion formulation, which can leverage the correlations
between color channels and between exposures, and subse-
quently employ an unrolling approach to solve it. To the best
of our knowledge, this is the first attempt to incorporate low-
rank tensor completion and deep networks in MEF-based HDR
imaging. We demonstrate that the proposed algorithm with
new contributions outperforms our previous work by large
margins. Furthermore, we present new experiments that reveal
the effectiveness and generalization ability of the proposed
algorithm through comparisons using additional datasets, com-
parisons with more algorithms, and more comprehensive ab-
lation studies.

The rest of this paper is organized as follows: Section II
reviews related work. Section III describes the proposed LRT-
HDR algorithm. Section IV discusses the experimental results.
Finally, Section V concludes the paper.

II. RELATED WORK

A. Ghost-Free HDR Imaging

A traditional model-based approach to ghost-free HDR
imaging is to detect ghost regions across the input exposures
and then alleviate their contributions to the synthesized HDR
image. For example, Gallo et al. [5] estimated the probability
of ghosting artifacts occurring in pixels, based on the deviation
from a reference. Heo et al. [6] employed the joint probability
density between exposures and energy minimization to detect
ghost regions. In [8]–[10], rank minimization was employed
for ghost-region detection. However, removing pixels in the
ghost regions may cause information loss in the input images,
thereby resulting in a loss of detail or visible artifacts in HDR
images.

Another model-based approach is to first align input LDR
images and then merge them to synthesize an HDR image.
Sen et al. [11] formulated HDR image synthesis as a single
optimization problem that jointly solves patch-wise alignment
and HDR synthesis. Hu et al. [12] aligned LDR images by
enforcing radiance and texture consistencies across exposures.
Oh et al. [15] also jointly performed LDR image alignment
and HDR synthesis by employing rank minimization to exploit
the linear dependency of LDR images. These algorithms tend
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to generate artifacts in the regions of the synthesized HDR
image, where the alignment fails due to large motions or poor
exposures.

Recently, deep learning-based approaches have been de-
veloped actively. They often employed the encoder-decoder
architecture; the LDR images are encoded into feature maps,
which are then merged and decoded back to the HDR im-
age [16], [17], [22]. In [18], [24], [25], attention mechanisms
were employed to assess the reliability of each pixel in
the fusion process, which reduced the contributions of ghost
regions to the synthesized HDR images. More recently, in [19],
feature-level alignment and attention maps were combined
to leverage the strengths of both mechanisms. Furthermore,
Niu et al. [20] employed a generative adversarial network
to fill missing textures caused by saturation and occlusion.
Despite their superior performance to model-based algorithms,
their performance is significantly affected by the diversity of
training data [27]. In addition, interpretation and analysis of
their behaviors is usually difficult, as features are processed in
considerably higher-dimensional feature spaces.

B. Algorithm Unrolling

Algorithm unrolling provides a systematic connection be-
tween iterative algorithms and deep neural networks [30].
Specifically, iterations of an iterative optimization algorithm
are implemented as a series of layers in a deep neural net-
work [29]. Since iterative algorithms are widely used in image
processing, algorithm unrolling has recently been employed in
various image processing and computer vision tasks [30].

In particular, iterative algorithms for sparse coding and
compressive sensing have benefited from algorithm unrolling.
For example, in [34]–[36], iterative algorithms for compressive
sensing reconstruction models were expanded, each iteration
of which was implemented as deep neural networks. Algorithm
unrolling has also been employed in filtering-based image
restoration algorithms to learn the filters for specific applica-
tions from training data, which were traditionally iteratively
updated, e.g., diffusion filters for image restoration [31],
measurement matrices for clutter suppression in ultrasound
imaging [32], and blur kernels for blind image deblurring [33].
Additionally, imaging tasks that rely on handcrafted model
information and are solved iteratively were shown to benefit
from algorithm unrolling. For example, the prior terms in
image deblurring [37], sparsity transforms in lensless image
reconstruction [38], and dictionaries for sparse coding in
super-resolution [39] were learned using algorithm unrolling.

Recently, Mai et al. [21] employed an algorithm unrolling
strategy for HDR imaging based on low-rank matrix com-
pletion. Although their algorithm explicitly considers ghost
regions during the fusion process by conforming to the
constraints of the mathematical model, it is limited to 2D
matrices and processes each color channel independently,
thereby breaking the correlations between color channels and
exposures. To overcome these limitations, in this work, we
develop an unrolled deep network for HDR imaging based on
low-rank tensor completion, which better exploits the multidi-
mensional dependencies across color channels and exposures.

III. PROPOSED LRT-HDR ALGORITHM

In this section, we first introduce the notations used through-
out this paper. We then formulate HDR imaging as a low-rank
tensor completion problem and derive an iterative solution.
Finally, we unroll the derived iterative solution by constructing
a deep network.

A. Notations

Hereafter, tensors are denoted by bold calligraphic letters
(e.g., A), matrices by bold uppercase letters (e.g., A), and
scalars by italicized Latin or Greek letters (e.g., n,K, α). The
element in tensor A at location (i1, . . . , iM ) is denoted by
A(i1, . . . , iM ). Given a third-order tensor A ∈ Rn1×n2×n3 ,
we express its ith horizontal, lateral, and frontal slices as A(i, :
, :), A(:, i, :), and A(:, :, i), respectively. For brevity, the ith
frontal slice is denoted by A(i). The Fourier transform F of
tensor A along the third dimension is denoted by Â, i.e.,

Â(i, j, :) = F{A(i, j, :)}. (1)

The inner product ⟨·, ·⟩ of two tensors A,B ∈ Rn1×···×nM is
defined as

⟨A,B⟩ =
∑

i1,...,iM

A(i1, . . . , iM )B(i1, . . . , iM ). (2)

The ℓ1-norm ∥·∥1 and Frobenius norm ∥·∥F of an M th-order
tensor A ∈ Rn1×···×nM are defined as

∥A∥1 =
∑

i1,...,iM

|A(i1, . . . , iM )|, (3)

∥A∥F =

√ ∑

i1,...,iM

|A(i1, . . . , iM )|2, (4)

respectively. For a matrix A ∈ Rn1×n2 , its truncated nuclear
norm ∥ · ∥r is defined as

∥A∥r =

min(n1,n2)∑

i=r+1

σi(A), (5)

where σi(A) is the ith largest singular value of A. Finally,
the orthogonal projection of a tensor onto the subspace cor-
responding to the set of observed entries Ω ∈ Nn1×···×nM is
defined as

[PΩ(A)](i1, . . . , iM ) =

{
A(i1, . . . , iM ), if (i1, . . . , iM)∈Ω,

0, otherwise.
(6)

B. Problem Formulation

Given I = {I1, . . . ,IN}, a set of N LDR images of H×
W × 3, where H and W are height and width, respectively,
captured with different exposure times, we aim to synthesize
an HDR image while suppressing ghosting artifacts caused by
global and local motions. We first map the pixel values in the
LDR images to the irradiance values Hi using the camera
response function (CRF) as

Hi =
h−1(Ii)

ti
, i = 1, . . . , N, (7)
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Fig. 1. Illustration of the creation of input data tensor D.

where h(·) is the CRF applied elementwise, and ti is the
exposure time for the ith image with ti > ti−1 for i ∈ [2, N ].
Then, we warp the irradiance maps to the reference image,
which is at the middle of the sequence, using SIFT-Flow [40];
hence, a set of aligned irradiance maps H′ = {H′

1, . . . ,H′
N}

are obtained. Finally, the observed scene irradiance tensor
D ∈ RHW×N×3 is constructed by stacking the vectorized
frontal slices (color channels) of H′

i, vec(H′
i), along the

second dimension, i.e.,

D(i, j, k) = [vec(H′
j)](i, 1, k). (8)

Fig. 1 illustrates the construction of D from H′.
Given scene irradiance tensor D, we formulate HDR image

synthesis as a low-rank tensor completion problem. Specifi-
cally, we assume that D can be decomposed into two compo-
nents: the desired irradiance background X and the alignment
error E . The lateral slices of X correspond to irradiance
maps of the exposures, and they are linearly related to that
of a static background; hence, X exhibits low-rankness. In
addition, since the errors caused by misalignment and poor
exposure occupy sufficiently small areas in the images, E is
sparse, i.e., most of its elements are zero. Moreover, due to
the errors, only pixels in a set Ω are observed. Therefore,
restoration of the low-rank tensor X for ghost-free HDR image
synthesis can be formulated as

minimize
X ,E

rank(X ) + λ∥E∥0
subject to PΩ(X + E) = PΩ(D),

(9)

where λ controls the balance between the tensor rank of X
and the sparsity of E , and PΩ denotes the projection onto the
set of reliable pixels Ω, as defined in (6).

We note that tensor ranks are not well defined due to their
multidimensional structures. Various tensor rank definitions
have been proposed [41]–[45], which explore different aspects
of low-rankness in tensor structures. In this work, we aim to
minimize the rank of the frontal slices of X to enforce content
consistency for the desired irradiance scene across all color
channels, while preserving the correlations between channels.
To this end, we adopt the tensor tubal multi-rank [46] to solve
the rank minimization problem in (9), as this rank has concrete
relationships with the low-rankness of frontal slices [47]. In

this work, we consider three-channel color images; thus, the
tubal multi-rank of X is defined as

rankTMR(X )=
[
rank(X̂ (1)

), rank(X̂ (2)
), rank(X̂ (3)

)
]
, (10)

i.e., the matrix ranks of the frontal slices of the Fourier
transform along the third dimension.

Furthermore, the exposures, i.e., columns, of desired X (i)

are linearly dependent on the ith channel of a single static
irradiance scene; consequently, X (i) has rank 1. To enforce a
target rank on X (i), we employ the partial sum of the tubal
nuclear norm (PSTNN) [48], a convex surrogate for the tubal
multi-rank, which is defined as

∥X∥PSTNN
r =

3∑

i=1

∥X̂ (i)∥r, (11)

where ∥ · ∥r is the truncated nuclear norm defined in (5).
Because the PSTNN inherits the ability to enforce exact matrix
ranks from the truncated nuclear norm, it can also constrain
the tubal multi-rank to a pre-determined value r. Assuming
rank-1 frontal slices, we set r = 1 in this work. Then, the
optimization problem in (9) becomes

minimize
X ,E

∥X∥PSTNN
r=1 + λ∥E∥1

subject to PΩ(X + E) = PΩ(D).
(12)

Note that, in (12), the models for X and E , i.e., the low-
rankness of the scene and the sparse error due to misalignment,
respectively, are based on certain assumptions. However, these
models may fail to accurately represent all features of real
scenes, such as the color distribution or underlying structures.
To overcome the limitations of the aforementioned models, we
add two general regularization functions, f : RHW×N×3 7→ R
and g : RHW×N×3 7→ R for X and E , respectively, to
compensate for the modeling inaccuracy. We also consider
noise in the observed pixels for real-world acquisition as
similarly done in [10], i.e., PΩ(X+E+N ) = PΩ(D), where
N is a noise tensor. Then, by introducing slack variables, the
optimization problem in (12) can be rewritten as

minimize
X ,E,T

∥X∥PSTNN
r=1 + λ∥E∥1 + f(X ) + g(E)

subject to X + E + T = PΩ(D),
∥PΩ(T )∥F ≤ δ,

(13)

where T is a tensor of slack variables to compensate for
unknown entries in D, and δ ≥ 0 is the noise level.

C. Solution to the Optimization

We employ the ALM method [49] to iteratively solve the
optimization problem in (13). To this end, we first reformu-
late (13) for variable splitting by introducing the auxiliary
variables P and Q as

minimize
X ,E,T ,P,Q

∥X∥PSTNN
r=1 + λ∥E∥1 + f(P) + g(Q)

subject to P = X ,Q = E,
X + E + T = PΩ(D),
∥PΩ(T )∥F ≤ δ.

(14)

The ALM method solves a series of unconstrained sub-
problems derived from an original constrained optimization
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problem. Specifically, we define the augmented Lagrangian
function L for problem (14) as

L(X ,E,T ,P ,Q,Λ,Γ,Φ)

= ∥X∥PSTNN
r=1 + λ∥E∥1 + ⟨Λ,PΩ(D)−X − E − T ⟩

+
µ

2
∥PΩ(D)−X − E − T ∥2F

+ f(P) +
α

2
∥X −P∥2F + ⟨Γ,X −P⟩

+ g(Q) +
β

2
∥E −Q∥2F + ⟨Φ,E −Q⟩ , (15)

where µ, α, and β > 0 are penalty parameters; Λ, Γ, and
Φ ∈ RHW×N×3 are Lagrange multiplier tensors, and ⟨·, ·⟩
denotes the inner product of two tensors defined in (2).

Solutions to the optimization problem in (14) can be ob-
tained by minimizing L in (15), i.e.,

(X ∗,E∗,T ∗,P∗,Q∗)

= arg min
X ,E,T ,P,Q

L(X ,E,T ,P ,Q,Λ,Γ,Φ). (16)

However, joint optimization over the five variables in (16) is
intractable in practice. Therefore, we employ the alternating
direction method of multipliers [50], which splits the optimiza-
tion over variables X , E , T , P , and Q and multipliers Λ, Γ,
and Φ, and then solves them iteratively and individually. We
describe how each subproblem is solved.

X -subproblem: At the kth iteration, in the first step, we
update X as

X k+1 = arg min
X

L(X ,Ek,T k,Pk,Qk,Λk,Γk,Φk)

= arg min
X

∥X∥PSTNN
r=1 + ⟨Λk,PΩ(D)−X−Ek−T k⟩

+
µk

2
∥PΩ(D)−X − Ek − T k∥2F

+
αk

2
∥X −Pk∥2F + ⟨Γk,X −Pk⟩

= arg min
X

1

µk + αk
∥X∥PSTNN

r=1 +
1

2
∥X −ΨX ,k∥2F ,

(17)

where ΨX ,k = (µk+αk)
−1(Λk+µkPΩ(D)−µkEk−µkT k+

αkPk −Γk). From the linearity of the Fourier transform and
the definition of the PSTNN, the optimization in (17) can be
separated into three matrix rank minimization problems on the
frontal slices in the Fourier domain [48] as

X̂ (i)

k+1 = arg min
X̂ (i)

1

µk + αk

∥∥X̂ (i)∥∥
r=1

+
1

2

∥∥X̂ (i) − Ψ̂
(i)

X ,k

∥∥2
F
, ∀i ∈ {1, 2, 3}. (18)

We employ the partial singular value thresholding (PSVT)
operator for complex matrices [48] to solve (18). Specif-
ically, suppose that the singular value decomposition of a
complex matrix A ∈ Cn1×n2 is A = UΣVH , where
Σ = diag(σ1, . . . , σmin(n1,n2)). Then, the PSVT operator Pr,τ

is defined as

Pr,τ (A) = U(Σ1 + Sτ (Σ2))V
H , (19)

where Σ1 = diag(σ1, . . . , σr, 0, . . . , 0), Σ2 = diag(0, . . . , 0,
σr+1, . . . , σmin(n1,n2)), and Sτ (·) is the element-wise soft-
thresholding operator [51] with parameter τ > 0; that is,
[S(A)](i, j) = sign(A(i, j)) · max{|A(i, j)| − τ, 0}. Then,
the Fourier domain solutions for the frontal slices are given
by

X̂ (i)

k+1 = Pr, 1
µk+αk

(
Ψ̂

(i)

X ,k

)
, ∀i ∈ {1, 2, 3}. (20)

Finally, the closed-form solution to (17) is given by the inverse
Fourier transform along the third dimension

X k+1(i, j, :) = F−1
{
X̂ k+1(i, j, :)

}
. (21)

E-subproblem: Next, we estimate E by solving

Ek+1 = arg min
E

L(X k+1,E,T k,Pk,Qk,Λk,Γk,Φk)

= arg min
E

λk∥E∥1 + ⟨Λk,PΩ(D)−Xk+1−E−T k⟩

+
µk

2
∥PΩ(D)−X k+1 − E − T k∥2F

+
βk

2
∥E −Qk∥2F + ⟨Φk,E −Qk⟩

= arg min
E

λk

µk + βk
∥E∥1 +

1

2
∥E −ΨE,k∥2F , (22)

where ΨE,k = (µk + βk)
−1(Λk + µkPΩ(D) − µkX k+1 −

µkT k + βkQk −Φk), and λk is the value of λ in (14) at the
kth iteration. The closed-form solution to (22) can be obtained
using the soft-thresholding operator [51]

Ek+1 = S λk
µk+βk

(ΨE,k). (23)

T -subproblem: We update T by solving the following
optimization problem.

T k+1 = arg min
∥PΩ(T )∥F≤δk

L(Xk+1,Ek+1,T ,Pk,Qk,Λk,Γk,Φk)

= arg min
∥PΩ(T )∥F≤δk

⟨Λk,PΩ(D)−X k+1 − Ek+1 − T ⟩

+
µk

2
∥PΩ(D)−X k+1 − Ek+1 − T ∥2F

= arg min
∥PΩ(T )∥F≤δk

∥T −ΨT ,k∥2F , (24)

where ΨT ,k = PΩ(D)−X k+1−Ek+1+µ−1
k Λk. We employ

Theorem 1 of [10] to solve this problem. Specifically, the
closed-form solution is given by

T k+1 = PΩC(ΨT ,k) + min

{
δk

∥PΩ(ΨT ,k)∥F
, 1

}
PΩ(ΨT ,k)

= U(ΨT ,k), (25)

where U(·) is used for a simpler notation.
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Fig. 2. LRT-HDR architecture. The network is composed of K blocks; each block represents an iteration of the iterative tensor completion algorithm. In
each block, optimization variables X ,E , and T are updated by closed-form solutions, and P and Q are updated by CNNs. The black, blue, and red arrows
indicate data flows, forward passing, and backpropagation, respectively. Finally, the HDR image is synthesized by applying a 1×1 convolutional filter to X ∗.

P- and Q-subproblems: Then, P and Q are similarly
updated as

Pk+1 = arg min
P

L(X k+1,Ek+1,T k+1,P ,Qk,Λk,Γk,Φk)

= arg min
P

f(P) +
αk

2
∥P − (X k+1 + α−1

k Γk)∥2F
= proxf (X k+1 + α−1

k Γk), (26)

Qk+1 = arg min
Q

L(Xk+1,Ek+1,T k+1,Pk+1,Q,Λk,Γk,Φk)

= arg min
Q

g(Q) +
βk

2
∥Q− (Ek+1 + β−1

k Φk)∥2F

= proxg(Ek+1 + β−1
k Φk), (27)

where proxf (·) and proxg(·) are the proximal operators [52]
corresponding to regularization functions f(·) and g(·), respec-
tively. Traditionally, regularization functions have been deter-
mined by observing certain phenomena in applications, e.g., fi-
delity of gradients [53], smoothness of illumination maps [54],
sparsity [55], or low-rankness of non-local patches [56].
However, this approach may be inaccurate and limit the
generalization ability of the model.

To overcome the limitations of traditional observation-based
regularization functions, we design f(·) and g(·) such that they
can express a wide variety of visual properties in real-world
scenarios. To this end, we employ CNNs to implement prox-
imal operators so that they can learn from training data and
effectively reconstruct complex and diverse visual features. We
denote the CNNs at the kth iteration as Vk and Wk. Then, the
closed-form solutions to the optimization problems in (26) and
(27) can be written as

Pk+1 = Vk

(X k+1 + α−1
k Γk

)
, (28)

Qk+1 = Wk

(Ek+1 + β−1
k Φk

)
, (29)

respectively. During training, the network parameters of Vk

and Wk are adjusted according to their input tensors X k+1 +
α−1
k Γk and Ek+1 + β−1

k Φk, respectively, to produce the
respective optimal solutions Pk+1 and Qk+1.

Fig. 3. Structure of Vk and Wk CNNs. The green and orange layers denote
convolutional and ReLU layers, respectively.

Multipliers: Finally, the Lagrange multiplier tensors are
updated following the strategy of the ALM method [49] as

Λk+1 = Λk + µk(PΩ(D)−X k+1 − Ek+1 − T k+1),

Γk+1 = Γk + αk(X k+1 −Pk+1),

Φk+1 = Φk + βk(Ek+1 −Qk+1). (30)

D. Unrolled Deep Network

Finally, we unroll iterations of the iterative tensor comple-
tion algorithm in the previous section into a series of blocks
to establish an HDR imaging network. Fig. 2 illustrates the
architecture of the proposed unrolled deep network for LRT-
HDR. An observed tensor, X 1 = PΩ(D), is fed as input and
all the other optimization variables are initialized to zeros.
Then, the optimization variables are passed forward to K
unrolled blocks. The operations in each block correspond to
those in one iteration of the iterative algorithm in Section III-C,
where X ,E , and T are updated by closed-form solutions,
and P and Q are updated by CNNs. The output of the
Kth block is the desired low-rank background irradiance
map X ∗. In addition to the network parameters for Vk and
Wk, the parameters µk and αk in (17), βk and λk in (22),
and δk in (24) are implemented as learnable weights and
updated by backpropagation during training. Note that the
architecture strictly follows a mathematical model; hence, it
is fully interpretable and allows analysis.

As Vk and Wk act as simple nonlinear mappings, they are
structure-agnostic. Thus, any available CNNs can be employed
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for Vk and Wk. For simplicity, in this work, we use a series
of convolutional layers and rectified linear unit (ReLU) layers
to construct both Vk and Wk. Fig. 3 illustrates the structure of
Vk and Wk CNNs. The convolutional layers have 128 filters
of size 3 × 3, except for the last layer. The input and output
of the first and last layer, respectively, have three channels.
As shown in Fig. 3, both Vk and Wk have two convolutional
layers at the beginning and end, with four convolutional layers
and five ReLU layers alternately in the middle. The effects of
different network structures will be discussed in Section IV-D.

The HDR image is synthesized by applying a 1× 1 convo-
lutional layer to X ∗, which is equivalent to the weighted sum
of elements in X ∗ in the exposure dimension, i.e.,

I∗
HDR(i, 1, k) =

N∑

j=1

wjX ∗(i, j, k), (31)

where I∗
HDR ∈ RHW×1×3 and wj are the weights for the 1×1

convolutional kernel without bias. We obtain the final HDR
image by reshaping I∗

HDR to the original size of H ×W × 3.

E. Training

To train the unrolled network, we define the loss function
that incorporates both the fidelity of the reconstructed results
and the rank constraint as

Ltotal = ωLrecon + (1− ω)Lrank, (32)

where Lrecon and Lrank are the reconstruction loss and rank
constraint loss, respectively, and ω is the weight that controls
the contribution of each term. We compute the radiance recon-
struction loss Lrecon as the ℓ1-norm of the difference between
the ground-truth HDR image IHDR and the synthesized HDR
image I∗

HDR, given by

Lrecon = ∥l(I∗
HDR)− l(IHDR)∥1, (33)

where l(·) denotes the conversion of the irradiance value to the
perceptually uniform domain [57]. As the ground-truths X gt

for X ∗ are not readily available for the rank constraint loss,
we construct X gt from IHDR. Specifically, because X (i)

gt has
rank 1, the columns of X (i)

gt are identical and equal to I(i)
HDR.

Thus, X (i)
gt ∈ RHW×N×3 can be constructed by replicating

I(i)
HDR ∈ RHW×1×3 by the number of exposures N , i.e.,

X (i)
gt =

N︷ ︸︸ ︷[
I(i)

HDR,I(i)
HDR, . . . ,I(i)

HDR

]
, ∀i ∈ {1, 2, 3}. (34)

Then, the rank constraint loss is defined as

Lrank = ∥l(X ∗)− l(X gt)∥1. (35)

We use the Adam optimizer [58] with a batch size of 1
for 40 epochs. We begin with a learning rate of η = 10−5

and decrease it by a factor of 0.1 at every tenth epoch. The
training samples are constructed by randomly cropping 128×
128 patches from images in the training dataset.

IV. EXPERIMENTAL RESULTS

A. Settings

We evaluate the performance of the proposed LRT-HDR
algorithm on two HDR video datasets—HDM-HDR [59] and
HDRv [60]—and two non-reference real-scene datasets con-
structed by Sen et al. [11] and Tursun et al. [61], respectively.
For HDM-HDR and HDRv, we randomly chose three consecu-
tive frames from the videos and then generated multi-exposure
images for each set using exposure biases of {−3, 0,+3}.
Finally, we obtained 187 and 32 multi-exposure image sets
from the HDM-HDR and HDRv datasets, respectively, with
the corresponding ground-truth HDR images as the middle
images. The image sets do not overlap, i.e., the sets for training
and testing are not from a single video. The source codes and
datasets are available on our project website.1

We compare the performance of the proposed algorithm
against those of Sen et al.’s algorithm [11], Hu et al.’s algo-
rithm [12], TNNM-ALM [10], Kalantari and Ramamoorthi’s
algorithm [16], Wu et al.’s algorithm [17], AHDRNet [18],
ADNet [19], HDR-GAN [20], and Mai et al.’s algorithm [21].
The first three are model-based algorithms, whereas the others
are deep learning-based algorithms. The results of the conven-
tional algorithms were obtained by executing the source codes
provided by the respective authors with the recommended
settings. We use a tone-mapping technique [62] to display
synthesized HDR images.

We train deep learning-based algorithms, including the
proposed LRT-HDR, using only 132 sets from the HDM-
HDR dataset; the remaining 55 sets from this dataset are used
for testing. Note that all the deep learning-based algorithms,
excluding the proposed LRT-HDR algorithm, adopt data aug-
mentation for performance improvement.

We define the observed region Ω ∈ NHW×N×3 as a set of
reliable pixel locations in terms of pixel value and structural
information. First, we define the set of well-exposed pixel
locations Ωe as

Ωe = {((k − 1)H + j, i, l)|0.01 ≤ Ii(j, k, l) ≤ 0.99}. (36)

Next, we employ the structural similarity index (SSIM) [63] to
consider the structural fidelity. Specifically, we define the set
of well-warped pixel locations Ωw based on the SSIM score
computed between the reference and warped images as

Ωw = {((k − 1)H + j, i, l) |
SSIM(H′

i(j, k, l),H′
ref(j, k, l)) ≥ 0.90}. (37)

The pixel-wise SSIM scores are computed using an 11 × 11
window. Then, we define Ω = Ωe ∩ Ωw. We set ω in (32) to
0.5, and the number of unrolled iterations to K = 10, unless
otherwise specified. For the CRF, we employ the gamma
correction function with a gamma value of 2.2 for consistency
with previous works [16]–[21].

B. Subjective Assessment

Fig. 4 compares the synthesis results obtained by each al-
gorithm for the 39th image set of the HDM-HDR dataset. The

1https://github.com/mtntruong/LRT-HDR
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(a)

(b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l)

Fig. 4. Comparison of results for the 39th image of the HDM-HDR dataset.
(a) LDR inputs and result of the proposed algorithm. The magnified regions
marked by red, blue, and green rectangles of the synthesized results of (b) Sen
et al. [11], (c) Hu et al. [12], (d) TNNM-ALM [10], (e) Kalantari and
Ramamoorthi [16], (f) Wu et al. [17], (g) AHDRNet [18], (h) ADNet [19],
(i) HDR-GAN [20], (j) Mai et al. [21], (k) the proposed algorithm, and (l)
ground-truth.

red arrows indicate the locations of interest where the artifacts
are the most obvious. For example, the arrows in the red
rectangles indicate artifacts in bright regions, whereas those in
the blue and green rectangles point out ghosting artifacts and
degraded textures, respectively. Sen et al.’s algorithm [11] and
Hu et al.’s algorithm [12] in Figs. 4(b) and (c), respectively,
inaccurately reconstruct bright regions when the corresponding
regions in the reference LDR image are over-exposed. In
Fig. 4(d), TNNM-ALM [10] fails to restore the information
in the bright region, i.e., red rectangle, which is saturated in
all the input images. Since TNNM-ALM does not contain
regularizers, it cannot compensate for information loss across
all inputs, resulting in artifacts. Kalantari and Ramamoorthi’s
algorithm [16] in Fig. 4(e) fails to recover the bright regions
faithfully, because it learns a simple weighting scheme that
may fail if the information is improperly restored. Wu et al.’s
algorithm in Fig. 4(f) alters textures in the red rectangle and
yields color artifacts in the green rectangle. AHDRNet [18],
ADNet [19], and HDR-GAN [20] in Figs. 4(g)–(i) provide

(a)

(b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l)

Fig. 5. Comparison of results for the 43rd image of the HDM-HDR dataset.
(a) LDR inputs and result of the proposed algorithm. The magnified regions
marked by red rectangle of the synthesized results of (b) Sen et al. [11], (c) Hu
et al. [12], (d) TNNM-ALM [10], (e) Kalantari and Ramamoorthi [16], (f) Wu
et al. [17], (g) AHDRNet [18], (h) ADNet [19], (i) HDR-GAN [20], (j) Mai
et al. [21], (k) the proposed algorithm, and (l) ground-truth.

ghosting artifacts in the blue rectangles, which contain large
over-exposed regions. This is because AHDRNet and ADNet
incorrectly estimate attention maps, whereas HDR-GAN fails
to compensate for global and local movements simultaneously.
In Fig. 4(j), Mai et al.’s algorithm [21] exhibits color artifacts
because of channel-wise matrix completion. On the contrary,
LRT-HDR in Fig. 4(k) provides the synthesis result mostly
identical to the ground-truth; this is due to the low-rank model
and because the error term in the optimization effectively
removes the ghost regions.

Fig. 5 compares the synthesis results of each algorithm for
the image set, of which the under-exposed image in Fig. 5(a)
contains large over-exposed regions. Sen et al.’s algorithm in
Fig. 5(b) yields small ghosting artifacts due to misalignment
on the clouds and the sun. Hu et al.’s algorithm, TNNM-ALM,
and Kalantari and Ramamoorthi’s algorithm in Fig. 5(c)–(e)
yield severe color artifacts and fail to restore the textures
in the bright regions of the sun. Wu et al.’s algorithm in
Fig. 5(f) provides a better result; however, the cloud textures
are altered because of the imprecise decoding process. AH-
DRNet, ADNet, and HDR-GAN in Figs. 5(g)–(i) yield severe
visible artifacts because AHDRNet and ADNet fail to infer
correct attention maps in the saturated regions of input images,
and the learned features of HDR-GAN are less effective to
restore those regions; therefore, the regions with less texture
information in input images are fused in the result. In Fig. 5(j),
Mai et al.’s algorithm provides greenish color artifacts in the
bright region because it cannot preserve relationships across
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(a)

(b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l)

Fig. 6. Comparison of results for the 9th image of the HDRv dataset. (a) LDR
inputs and result of the proposed algorithm. The magnified regions marked by
red, blue, and green rectangles of the synthesized results of (b) Sen et al. [11],
(c) Hu et al. [12], (d) TNNM-ALM [10], (e) Kalantari and Ramamoorthi [16],
(f) Wu et al. [17], (g) AHDRNet [18], (h) ADNet [19], (i) HDR-GAN [20],
(j) Mai et al. [21], (k) the proposed algorithm, and (l) ground-truth.

different color channels. However, the proposed LRT-HDR
algorithm in Fig. 5(k) yields a faithful restoration without
noticeable artifacts by restoring information even in saturated
regions.

Fig. 6 shows the synthesis results for the 9th image set from
the HDRv dataset containing fast movement and strong illu-
mination changes. In Figs. 6(b), (f)–(i), Sen et al.’s algorithm,
Wu et al.’s algorithm, AHDRNet, ADNet, and HDR-GAN,
respectively, yield strong ghosting artifacts in the red rectangle
regions either because of incorrect alignment and attention
map estimation or ineffective texture generation. Hu et al.’s
and Kalantari and Ramamoorthi’s algorithms in Figs. 6(c) and
(e), respectively, again lose the textures in the bright regions in
the green rectangles. TNNM-ALM and Mai et al.’s algorithm
in Figs. 6(d) and (j) produce better results, but yield a small
region of deterioration and detail loss, respectively, in the
blue and green rectangles. In contrast, LRT-HDR in Fig. 6(k)
provides the synthesis result without visible artifacts, and the
fine textures in the bright region are faithfully preserved.

(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Fig. 7. Comparison of results for an image in the Tursun’s dataset. (a) LDR
inputs and synthesis result of the proposed algorithm. The synthesized results
of (b) Sen et al. [11], (c) Hu et al. [12], (d) TNNM-ALM [10], (e) Kalantari
and Ramamoorthi [16], (f) Wu et al. [17], (g) AHDRNet [18], (h) ADNet [19],
(i) HDR-GAN [20], and (j) Mai et al. [21].

Furthermore, the results in Fig. 6 for a dataset which was
not used for training verify that the proposed LRT-HDR has
superior generalization ability to other deep learning-based
algorithms, because LRT-HDR primarily relies on low-rank
formulation and is less dependent on learned features.

Finally, Figs. 7 and 8 compare the HDR synthesis results
of each algorithm for non-reference real-scene images. Fig. 7
compares the synthesis results for the image set in the Tursun
et al.’s dataset [61] that was captured using an exposure
bias of {−2, 0,+2}. The proposed algorithm in Fig. 7(a)
synthesizes the most natural result, which contains minimal
visible artifacts. Fig. 8 shows synthesis results of the image
set in the Sen et al.’s dataset [11], which was captured with
an exposure bias of {−4, 0,+4}. The results are tone-mapped
using darker settings for a better illustration of musical notes
in the magnified regions. The proposed algorithm yields better
texture reconstruction compared to the other state-of-the-art
algorithms while effectively suppressing color artifacts.
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(a)

(b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 8. Comparison of results for an image in the Sen et al.’s dataset. (a) LDR
inputs and synthesis result of the proposed algorithm. The magnified regions
marked by red rectangle of the synthesized results of (b) Sen et al. [11], (c) Hu
et al. [12], (d) TNNM-ALM [10], (e) Kalantari and Ramamoorthi [16], (f) Wu
et al. [17], (g) AHDRNet [18], (h) ADNet [19], (i) HDR-GAN [20], (j) Mai
et al. [21], and (k) the proposed algorithm.

C. Objective Assessment

To complement the subjective assessment, we objectively
compare the HDR synthesis results of the proposed algorithm
with those of conventional algorithms using five quality met-
rics: PSNR in the tone-mapped domain [16] (µ-PSNR), per-
ceptually uniform extensions to PSNR (PU-PSNR) and multi-
scale SSIM (PU-MSSSIM) [64], and HDR visible difference
predictor (HDR-VDP) [65]. For HDR-VDP, we use the quality
index score Q and the probability score P with the following
parameters: a diagonal display size of 24 inches and a viewing
distance of 0.5 meter, as in [17], [20]. The metrics were
averaged over 55 test image sets from the HDM-HDR dataset
and 32 sets from the HDRv dataset.

Table I presents the objective assessment results for the
algorithms on the HDM-HDR dataset. Note that the µ-
PSNR and PU-PSNR metrics measure the fidelity of the
reconstructed pixel values to the ground-truths, whereas PU-
MSSSIM measures the structural similarities. The synthesized
HDR images by the proposed algorithm are more faithful
to the original HDR images than those by the conventional
algorithms. Specifically, the µ-PSNR and PU-PSNR scores of
the proposed algorithm exceed those of the other algorithms by
large margins. The proposed algorithm also achieves the high-
est PU-MSSSIM score, indicating that the restored textures are
the most similar to the ground-truths. Finally, the HDR-VDP
(Q) index measures the perceptual differences between the
reconstructed images and ground-truths, whereas the HDR-
VDP (P ) index indicates the probability of an average person
noticing such differences. The proposed algorithm achieves
the highest Q and lowest P , implying that the results are
perceptually most faithful to the ground-truths.

Table I also reports the data augmentation procedures and

approximate numbers of training samples used by the deep
learning-based algorithms. Kalantari and Ramamoorthi (K.
and R.)’s algorithm [16] uses the smallest patch size (40×40)
while employing the largest number of augmentation combina-
tions, thereby yielding a vast number of training samples. Wu
et al.’s algorithm [17], AHDRNet [18], ADNet [19], and HDR-
GAN [20] use the same patch sizes (256×256) and augmenta-
tion combinations, thereby constructing the same numbers of
training samples. Mai et al.’s algorithm [21] uses 128 × 128
patches and employs color channel permutation to compensate
for the limited effectiveness of applying matrix completion to
color images. Notably, the proposed LRT-HDR algorithm uses
128×128 patches without data augmentation; in other words,
it uses the fewest number of training samples. As the proposed
algorithm relies on the theoretical foundation of the low-rank
model, minimal learned information is required. Therefore, the
proposed LRT-HDR can achieve better performance without
augmentation. The effects of data augmentation on LRT-HDR
will be discussed in Section IV-D.

Table II quantitatively compares the synthesis performance
of the algorithms on the HDRv dataset, which was not used
for training. The scores of the proposed algorithm remain
the highest, proving its superior generalization ability. More
specifically, the proposed algorithm yields significantly higher
µ-PSNR and PU-PSNR scores than those of the conventional
algorithms, indicating better reconstruction quality. ADNet
achieves the highest PU-MSSSIM score; however, that of
the proposed algorithm is comparable. This implies that the
proposed algorithm and ADNet provide better restored textures
than the other algorithms. Furthermore, the proposed algorithm
achieves the highest Q and lowest P . This implies greater
similarities between the ground-truths and the HDR images
synthesized by the proposed algorithm. To summarize, the
proposed algorithm achieves the highest overall scores on the
HDRv dataset as well while using the fewest training samples;
this indicates that the theoretical foundation from the low-
rank tensor completion model minimizes the dependency of
the network on learned visual features, thereby increasing the
generalization ability.

D. Model Analysis
We conduct ablation studies to analyze the interpretability

of the deep networks, the effects of data augmentation, the
network structures of Vk and Wk, the number of unrolled
iterations, and the loss functions on the synthesis performance.

1) Interpretability: As the proposed algorithm inherits the
theoretical foundation of mathematical models and its iter-
ative solution, the proposed network is fully interpretable.
We analyze the interpretability of the network by visualizing
intermediate results at selected unrolled blocks. Specifically,
Fig. 9 shows the synthesized results of the region in the blue
rectangle in Fig. 5 at every two blocks. As going through
the blocks, equivalent to going through the iterations of the
theoretical solution, ghosting artifacts are gradually removed
while textures are gradually restored. The intermediate results
show that the behavior of the proposed unrolled deep network
follows that of the mathematical model, thereby providing
interpretability and analyzability.
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TABLE I
QUANTITATIVE COMPARISON OF HDR SYNTHESIS PERFORMANCE ON THE HDM-HDR DATASET. THE ↑ AND ↓ SYMBOLS INDICATE “HIGHER IS

BETTER” AND VICE VERSA, RESPECTIVELY. FOR EACH METRIC, THE BOLDFACED AND UNDERLINED NUMBERS DENOTE THE BEST AND THE
SECOND-BEST RESULTS, RESPECTIVELY.

µ-PSNR (↑) PU-PSNR (↑) PU-MSSSIM (↑) HDR-VDP (Q) (↑) HDR-VDP (P ) (↓) # Training Samples Augmentation

Sen et al. [11] 39.91 40.07 0.9849 61.21 0.2009 None None
Hu et al. [12] 32.68 32.89 0.9743 57.90 0.5711 None None
TNNM-ALM [10] 33.68 34.84 0.9640 57.28 0.3772 None None
K. and R. [16] 38.21 37.96 0.9894 57.58 0.2211 2,000,000 Permute + flip + rotate
Wu et al. [17] 43.49 43.11 0.9950 66.36 0.2520 120,000 Flip + rotate
AHDRNet [18] 40.10 41.08 0.9886 64.18 0.4456 120,000 Flip + rotate
ADNet [19] 47.61 47.59 0.9979 66.90 0.0457 120,000 Flip + rotate
HDR-GAN [20] 34.41 35.33 0.9853 62.07 0.2916 120,000 Flip + rotate
Mai et al. [21] 48.94 49.01 0.9982 66.84 0.0339 66,000 Permute
Proposed 49.54 49.65 0.9990 68.11 0.0273 13,000 None

TABLE II
QUANTITATIVE COMPARISON OF HDR SYNTHESIS PERFORMANCE ON THE HDRV DATASET.

µ-PSNR (↑) PU-PSNR (↑) PU-MSSSIM (↑) HDR-VDP (Q) (↑) HDR-VDP (P ) (↓)

Sen et al. [11] 53.50 55.45 0.9992 75.44 0.0226
Hu et al. [12] 38.45 38.76 0.9962 68.09 0.0809
TNNM-ALM [10] 44.58 46.59 0.9894 65.61 0.0819
Kalantari and Ramamoorth [16] 50.75 52.22 0.9987 73.37 0.0300
Wu et al. [17] 47.87 50.01 0.9978 67.74 0.1160
AHDRNet [18] 47.52 50.35 0.9941 69.84 0.1711
ADNet [19] 55.94 57.38 0.9993 74.05 0.0085
HDR-GAN [20] 39.98 40.83 0.9971 70.61 0.0899
Mai et al. [21] 54.40 55.50 0.9991 75.30 0.0069
Proposed 56.52 57.97 0.9992 75.83 0.0049

(a) (b) (c) (d) (e) (f) (g)

Fig. 9. Synthesized results at intermediate blocks. The magnified regions marked by blue rectangle in Fig. 5 of (a) LDR inputs, the synthesized results at
blocks (b) k = 2, (c) k = 4, (d) k = 6, (e) k = 8, (f) k = 10 (final), and (g) ground-truth.

2) Augmentation: To analyze the effects of data augmen-
tation on the synthesis performance, we train the proposed
network with the three different augmentation strategies listed
in Table I. Table III compares the performances on the HDM-
HDR dataset. The data augmentation yields only a small per-
formance improvement. In addition, the PU-MSSSIM scores
are stable regardless of augmentation. For the other metrics,
the differences between “None” and “Flip + rotate” and
between “Permute” and “Permute + flip + rotate” are small,
implying that geometric diversity is insignificant. This analysis
shows that the proposed algorithm can achieve approximately
peak performance without data augmentation while requiring
the smallest training set, as the reconstruction of HDR images
mostly relies on the low-rank model.

3) Network Structures: We analyze the effects of the net-
work structures of V and W on the synthesis performance.

To this end, we train the networks in Fig. 3 with different
numbers of convolutional layers. More specifically, we add or
remove pairs of convolutional and ReLU layers in the middle
of the network. Table IV compares the synthesis performances
of different settings on the HDM-HDR dataset. It is apparent
that the network structures have a significant impact on the
synthesis performances. As the number of convolutional lay-
ers increases from five to eight, the synthesis performance
improves by increasing learned features. However, increasing
the number of convolutional layers too much degrades the
performance. This is because increasing the number of layers
requires more parameters to be learned, making the learning
difficult, thus yielding inaccurate synthesis.

4) Unrolled Iteration: Table V reports the effects of the
number of unrolled iterations on the synthesis performance.
When the algorithm is unrolled with five iterations, i.e.,
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TABLE III
EFFECTS OF DATA AUGMENTATION ON THE SYNTHESIS PERFORMANCE.

# Training Samples µ-PSNR (↑) PU-PSNR (↑) PU-MSSSIM (↑) HDR-VDP (Q) (↑) HDR-VDP (P ) (↓)

None 13,000 49.54 49.65 0.9990 68.11 0.0273
Permute 78,000 49.64 49.84 0.9990 68.14 0.0259
Flip + rotate 120,000 49.57 49.67 0.9990 68.11 0.0273
Permute + flip + rotate 600,000 49.66 49.85 0.9991 68.14 0.0258

TABLE IV
EFFECTS OF NETWORK STRUCTURES ON THE SYNTHESIS PERFORMANCE.

# conv. µ-PSNR PU-PSNR PU-MSSSIM HDR-VDP (Q) HDR-VDP (P )

5 47.47 47.55 0.9982 66.29 0.0439
8 49.54 49.65 0.9990 68.11 0.0273

11 43.59 44.95 0.9951 64.65 0.0704

TABLE V
EFFECTS OF UNROLLED ITERATION NUMBERS ON THE SYNTHESIS

PERFORMANCE.

K µ-PSNR PU-PSNR PU-MSSSIM HDR-VDP (Q) HDR-VDP (P )

5 47.47 47.82 0.9984 66.40 0.0412
10 49.54 49.65 0.9990 68.11 0.0273
15 49.34 49.41 0.9989 67.57 0.0289
20 48.55 48.75 0.9987 67.47 0.0292

TABLE VI
EFFECTS OF LOSSES ON THE SYNTHESIS PERFORMANCE.

ω µ-PSNR PU-PSNR PU-MSSSIM HDR-VDP (Q) HDR-VDP (P )

0 47.76 47.38 0.9979 66.87 0.0382
0.25 47.45 47.03 0.9979 66.50 0.0520
0.50 49.54 49.65 0.9990 68.11 0.0273
0.75 47.49 47.70 0.9980 66.34 0.0543
1 48.26 48.39 0.9986 66.85 0.0322

K = 5, the number of operations and learned features are
insufficient to ensure faithful synthesis, yielding the worst
performance. As K increases, the synthesis performance im-
proves, because the number of learned features increases.
However, increasing K too much deteriorates the performance
while increasing the computational and memory complexities.
This is because the number of learnable parameters increases
proportionally with an increase in K, thereby making it harder
to converge and requiring more training samples. Therefore,
we chose K = 10 in this work to facilitate a desirable
performance versus computation and memory trade-off.

5) Loss Functions: Finally, we discuss the effects of the
losses on the synthesis performance by changing ω in (32).
Table VI compares the results. When only the rank constraint
or reconstruction fidelity is considered, i.e., ω = 0 or 1, the
fidelity (ω = 1) yields higher performance. However, when
one of those components is considered more important that
the other, e.g., ω = 0.25 or 0.75, the performance is worse
than when ω = 0 or 1. This is because the uneven contribution
of the two losses hinders the convergence of the optimizer to
satisfy the objective, making the training unstable. The best

(a) (b) (c) (d) (e) (f)

Fig. 10. An example of failure cases of the proposed algorithm. (a)–
(c) LDR inputs, the synthesized results of (d) Mai et al. [21], (e) the proposed
algorithm, and (f) ground-truth.

TABLE VII
COMPARISON OF THE AVERAGE EXECUTION TIMES IN SECONDS AND THE

NUMBER OF PARAMETERS.

Alignment Main algorithm # Param. (M)

Sen et al. [11] - 70.97 -
Hu et al. [12] - 223.14 -
TNNM-ALM [10] 26.77 21.71 -
K. and R. [16] 28.09 0.20 0.38
Wu et al. [17] 0.49 0.24 16.61
AHDRNet [18] - 0.82 1.51
ADNet [19] - 1.28 2.96
HDR-GAN [20] - 0.36 2.56
Mai et al. [21] 26.77 63.44 (SVD: 57.72) 17.75
Proposed 26.77 18.23 (SVD: 17.61) 17.83

results are obtained when both the HDR reconstruction fidelity
and the low-rankness of the output tensors contribute equally.

6) Limitation: Although the proposed LRT-HDR algorithm
yields high-quality synthesized results without noticeable ar-
tifacts in most cases, it has a limitation that should be
further addressed. Specifically, if the reference LDR image has
saturated regions occluded in a shorter-exposed image, LRT-
HDR fails to recover the textures in those regions faithfully.
Fig. 10 shows an example of those artifacts, where the light
bulbs in Fig. 10(b) are occluded in Fig. 10(a). Nevertheless,
notice that LRT-HDR in Fig. 10(e) provides higher synthesis
quality with less artifacts than the matrix completion-based
approach, Mai et al.’s algorithm [21], in Fig. 10(d).

E. Computational Complexity

Table VII compares the average execution times of different
algorithms over 55 test sets of resolution 1820 × 980 in
HDM-HDR. In this test, we use a PC with a 3.6 GHz CPU
and an Nvidia 2080Ti GPU. The proposed algorithm is the
second most inefficient in terms of execution time. However,
notice that the most time-consuming procedure in the main
algorithm is the computation of the SVD, for which a PyTorch
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implementation is employed. Thus, if efficient techniques are
employed for SVD [66], [67], the execution time would be
significantly further reduced. Furthermore, efficient alignment
techniques, e.g., [68], can reduce the execution time, because
different alignment algorithms do not impact the synthesis
performance of the proposed algorithm significantly. Table VII
also lists the number of parameters for learning-based al-
gorithms. Although the structure of CNNs for LRT-HDR is
simple as shown in Fig. 3, because a total of 2K CNNs are
used, the number of parameters of the proposed algorithm
is higher than those of conventional algorithms. However,
note that any available CNNs can be employed to reduce the
number of parameters as mentioned previously.

V. CONCLUSIONS

We developed a ghost-free HDR image synthesis algorithm,
called LRT-HDR, by unrolling a low rank tensor completion
algorithm, which combines the advantages of both model-
and learning-based approaches. By exploiting the low rank
properties of tensors constructed from LDR images, we for-
mulated HDR image synthesis as a low-rank tensor comple-
tion problem by defining learnable regularizers that extract
hidden model information. Then, we iteratively solved the
optimization problem using the ALM method. Finally, the
iterative algorithm was unrolled for each iteration, wherein the
optimization variables are updated by closed-form solutions
and the regularizers by CNNs. Experimental results showed
that the proposed LRT-HDR algorithm provides better HDR
image synthesis performance than state-of-the-art algorithms
while requiring significantly fewer training samples. Moreover,
it was demonstrated that LRT-HDR exhibits better generaliza-
tion ability than conventional end-to-end deep learning-based
algorithms.
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