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Abstract—Pansharpening aims to generate a high-resolution
multispectral (HRMS) image by merging a low-resolution
multispectral (LRMS) image with a high-resolution panchro-
matic (PAN) image. While traditional model-based pansharp-
ening algorithms have strong theoretical foundations, their
performance and generalizability are limited by handcrafted
formulations. In contrast, recent deep learning approaches out-
perform model-based algorithms but do not effectively consider
the physical properties of multispectral (MS) images, such as
their spatial and spectral dependencies. These physical properties
facilitate the exploitation of the actual imaging process, leading
to enhanced spatial and spectral fidelities. In this work, we
propose a deep unfolded tensor rank minimization framework
with generalized detail injection for pansharpening to overcome
the weaknesses of both model- and learning-based approaches
while leveraging their advantages. Specifically, we first formulate
the pansharpening task as a tensor rank minimization problem
to exploit the low-rankness of MS images, providing a robust
theoretical foundation on the physical properties of MS data.
We also develop a generalized detail injection component, which
effectively exploits the information in the PAN images, and
incorporate it into the optimization to improve generalizability
and representation capability. Then, we define a data-driven
regularizer to compensate for modeling inaccuracies in the low-
rank model and solve the optimization problem using an iterative
technique. Finally, the iterative algorithm is unfolded into a
multistage deep network, in which the optimization variables are
solved by closed-form solutions and a data-driven regularizer in
each stage. Experimental results on various MS image datasets
demonstrate that the proposed algorithm achieves better pan-
sharpening performance and interpretability than state-of-the-art
algorithms.

Index Terms—Tensor rank minimization, deep unfolding,
model-based deep learning, pansharpening.

I. INTRODUCTION

REMOTE sensing applications, such as change detec-
tion, target recognition, and environmental monitoring,

demand high-resolution multispectral (HRMS) images with
rich details to achieve superior performance [1]. However,
remote sensing satellites can capture only low-resolution mul-
tispectral (LRMS) and high-resolution panchromatic (PAN)
images via two different sensors because of the physical
limitations of sensors, such as diffraction limits and sensor
artifacts [2]. A PAN image has high spatial resolution with
great detail but lacks spectral information, whereas the LRMS
image provides rich spectral information but sacrifices spatial
resolution. To overcome the limitations of satellite sensors

T. T. N. Mai and C. Lee are with the Department of Multimedia Engineer-
ing, Dongguk University, Seoul 04620, South Korea.

E. Y. Lam is with the Department of Electrical and Electronic Engineering,
The University of Hong Kong, Pokfulam, Hong Kong.

in capturing HRMS images, pansharpening techniques that
estimate HRMS images from pairs of LRMS and PAN images
have been developed. Specifically, a pansharpening algorithm
combines the respective spectral and spatial information from
the LRMS image and its corresponding PAN image to generate
an HRMS image with rich details. Research in pansharpening
has attracted significant attention because of its practical
importance. Thus, various approaches have been developed,
which can be categorized into four groups based on how
the information from the PAN images is exploited [1]: com-
ponent substitution (CS)-, multiresolution analysis (MRA)-,
variational optimization (VO)-, and deep learning (DL)-based
algorithms.

The CS-based algorithms [3]–[6] separate the LRMS image
into the spatial and spectral components and substitute the spa-
tial component with that of the PAN image. On the other hand,
the MRA-based algorithms [7]–[12] extract spatial details
from the PAN image and inject them into the LRMS image.
CS-based algorithms exhibit superior spatial fidelity at the cost
of spectral distortion, whereas MRA-based algorithms excel at
spectral fidelity but suffer from spatial distortion [13]. The VO-
based algorithms [14]–[24] formulate the pansharpening task
as regularized optimization problems by modeling the physical
properties of multispectral (MS) images. However, their per-
formance relies on handcrafted regularization and prior terms,
which may not accurately represent the characteristics of MS
images.

Recently, DL-based algorithms employing convolutional
neural networks (CNNs) have been actively developed for
pansharpening and have shown superior performance [13],
[25]–[34]. However, as DL-based algorithms focus on manip-
ulating the deep features, they may yield spatial or spectral
distortions during the decoding of these features back to
HRMS images [35]. Moreover, their network architectures
are frequently empirically designed without domain-specific
knowledge, limiting interpretability [36]. In addition, model-
based DL techniques have recently been employed in pan-
sharpening [35]–[42] to enhance interpretability by exploiting
domain-specific knowledge, i.e., the physical properties of MS
images, with learnable components. Nevertheless, they inherit
the limitations of their generic degradation models, which
do not effectively represent the properties of MS and PAN
images and are prone to modeling inaccuracies. Moreover,
although different sensors capture PAN images with diverse
characteristics, existing model-based DL approaches [35]–
[42] process the PAN images using a fixed model without
considering such differences, thereby degrading quality.

In this work, to address the aforementioned limitations of
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conventional algorithms, we propose a deep unfolding tensor
rank minimization model with generalized detail injection,
called UTeRM (Unfolding Tensor Rank Minimization). Tensor
rank minimization ensures high spatial and spectral fidelity
by faithfully restoring multidimensional dependency, whereas
the generalized detail injection increases the generalizability
by effectively exploiting the characteristics of PAN images
and their correlations with those of MS images. Therefore,
the proposed UTeRM can overcome the weaknesses of both
learning- and model-based approaches while leveraging their
advantages. To the best of our knowledge, this is the first
model-based DL approach with a generalized detail injection
component, while existing model-based DL algorithms use a
fixed model or formulation, thereby limiting their adaptivity.
In addition, the proposed UTeRM is developed based on a
more robust low-rank tensor model than existing model-based
DL approaches [35]–[42] to mitigate their limitations.

Specifically, we first formulate the pansharpening task as a
tensor rank minimization problem to enforce a low rank on
the resulting HRMS images. Then, we develop a generalized
detail injection term, which extends the generalizability and
representation capability of the proposed algorithm, and in-
corporate it into the optimization problem. Next, we design
a CNN-based learnable regularizer instead of explicit formu-
lations to compensate for the potential modeling inaccuracy
of the low-rank model. This data-driven regularizer learns the
visual features by training the LRMS and PAN pairs, thereby
producing accurate regularization for the model. Then, we
iteratively solve the tensor rank minimization problem and
establish a multistage deep unfolded network from the iterative
solution. In each stage, the optimization variables are updated
by closed-form solutions, and the regularizer is updated using
a CNN-based solution. The proposed algorithm achieves state-
of-the-art performance and better interpretability by incorpo-
rating a generalized detail injection component and learnable
regularizer into the tensor rank minimization framework.

In summary, we make the following contributions.

• We formulate the pansharpening task as a tensor rank
minimization problem with a generalized detail injection
component, ensuring high spectral and spatial fidelity and
enhancing generalizability.

• We develop an iterative algorithm to solve the opti-
mization problem with various implementations of the
generalized detail injection.

• We establish an interpretable multistage deep network for
pansharpening by unfolding the iterative algorithm; each
stage of the deep network corresponds to an iteration.

• We experimentally demonstrate that the proposed algo-
rithm significantly outperforms state-of-the-art algorithms
on several datasets, generating HRMS images with high
spectral and spatial fidelities; we also analyze its behav-
iors and characteristics.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related work. Section III describes the
proposed UTeRM for pansharpening. Then, Section IV dis-
cusses the experimental results and ablation studies. Finally,
Section V provides the concluding remarks.

II. RELATED WORK

A. Model-Based Pansharpening

Model-based algorithms are categorized into CS-, MRA-,
and VO-based algorithms. The CS-based algorithms separate
the LRMS image into the spatial and spectral components by
adopting spectral transformations, including principal compo-
nent analysis [3], Gram–Schmidt analysis [4], partial replace-
ment adaptive CS [5], and band-dependent spatial detail [6].
Then, they substitute the spatial component with that from
the PAN image for HRMS image generation. The MRA-
based algorithms employ multiresolution transformations, such
as the Laplacian pyramid [7], low-pass filter [8], wavelet
transform [9], [10], morphological operators [11], and modu-
lation transfer function-based Gaussian filters [12], to extract
spatial details from the PAN image, and generate the HRMS
image by injecting the spatial details into the upsampled
LRMS image. These CS- and MRA-based algorithms have
opposing strengths and weaknesses. For example, CS-based
algorithms exhibit good spatial fidelity but high spectral distor-
tions, whereas MRA-based algorithms yield superior spectral
performance but suffer from spatial distortions.

The VO-based algorithms formulate and solve regularized
inverse problems that model the characteristics and relation-
ships of LRMS, PAN, and HRMS images. Several regu-
larization models, such as the total variation [14], hyper-
Laplacian prior [15], adaptive maximum a posteriori [16],
sparse priors [17], and DL-based priors [18], have been
developed to capture the characteristics of satellite images.
In addition, several VO-based algorithms exploit the low-
rankness of MS images, assuming linear dependency between
spectral channels [19]–[23]. More recently, a low-rank ten-
sor completion (LRTC) model was employed to reflect the
low-rankness of MS images more effectively by considering
multidimensional dependency [24]. VO-based algorithms can
achieve high spectral and spatial fidelity owing to their so-
phisticated optimization models; however, they are generally
computationally complex, and their hyperparameters require
manual adjustments. Moreover, the performance of these algo-
rithms depends on handcrafted regularizers and priors, limiting
their generalizability.

B. Deep Learning-Based Pansharpening

Early DL-based algorithms employed CNNs as end-to-end
mappings to extract and merge the spectral and spatial features
directly from the input LRMS and PAN images and then
generate HRMS images [26]–[28]. More recent DL-based
algorithms aim to achieve higher performance by extracting
more advanced and complex features from the LRMS and PAN
images by employing sophisticated architectures and learning
strategies, such as bidirectional pyramid networks [25], de-
tail injection-based networks [13], generative adversarial net-
works [29], feature modulation-based networks [30], attention-
based networks [43], [44], unsupervised learning [31], dual-
domain learning [32], and transformers [33], [34]. However,
DL-based algorithms do not effectively reflect the physical
properties of the PAN and MS images, resulting in HRMS
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images with spectral and spatial distortions. Moreover, inter-
preting and explaining the behavior of DL-based algorithms is
difficult because of their empirically designed architectures.

Recently, algorithm unfolding or unrolling [45] has been
employed for pansharpening to exploit the physical properties
of MS images more effectively [35]–[42], constructing model-
based deep networks. In this approach, the pansharpening task
is first formulated as an optimization problem with learnable
components, such as filter kernels [35]–[38] or degradation
operators [39]–[42]. Then, the optimization problem is solved
iteratively, and the iterations are unfolded into a series of
network layers, where the learnable components are adjusted
during training via backpropagation. Model-based deep net-
works inherit the robust theoretical foundation of model-based
algorithms while retaining data-driven learning capabilities,
achieving significant success. However, they inherit the limita-
tions of generic models in representing the physical properties
of the PAN and MS images and employ a fixed formulation
to exploit spatial information from the PAN images that may
not effectively represent the diverse characteristics of these
images, resulting in low-fidelity HRMS images.

Despite superior results, existing DL-based approaches face
certain limitations, e.g., overlooking the physical properties
of PAN and MS images and ineffectively exploiting spatial
information of diverse PAN images. In this work, we address
these limitations by developing a tensor rank minimization
approach with effective generalized detail injection.

III. PROPOSED ALGORITHM—UTERM

A. Notations and Definitions

In this paper, tensors are denoted by boldfaced calligraphic
Latin or Greek letters, e.g., A or Λ; matrices by boldfaced
uppercase Latin letters, e.g., A; and scalars by italicized Latin
or Greek letters, e.g., a, N , and α, except for the letters f and
F , which are exclusively used to denote functions and tensor-
based operators, respectively. Given a matrix A ∈ Rn1×n2 ,
the conjugate transpose and pseudo-inverse of A are denoted
as AH and A†, respectively. Given a tensor A ∈ Rn1×n2×n3 ,
its i-th frontal slice, i.e., channel or band, is denoted by A(i).

Given two tensors A,B ∈ Rn1×n2×n3 , the tensor inner
product ⟨A,B⟩ is defined as

⟨A,B⟩ ≜
∑

i

〈A(i),B(i)
〉
, (1)

where
〈A(i),B(i)

〉
≜ tr

(A(i)TB(i)
)

represents the matrix
inner product. The tensor-tensor product (t-product) [46] A∗B
is defined as

A ∗B = fold(bcirc(A)unfold(B)), (2)

where bcirc(A) ∈ Rn1n3×n2n3 indicates the block circulant
matrix of A, i.e.,

bcirc(A) =




A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)


 , (3)

and unfold(B) =
[B(1);B(2); . . . ;B(n3)

]
∈ Rn1n3×n2 , and

fold is the inverse of unfold, i.e., fold(unfold(B)) = B.

B. Problem Formulation
We define an LRMS image as M ∈ Rh×w×C , where h, w,

and C denote its height, width, and the number of spectral
channels, respectively, and a PAN image as P ∈ RH×W ,
where H = rh and W = rw denote its height and width,
respectively, and r > 1 is the resolution ratio. In [24], it
was experimentally shown that HRMS images exhibit the low
tubal-rank property. Therefore, given M and P, the pansharp-
ening task can be formulated as an LRTC problem. However,
as previously discussed, LRTC models require accurately de-
termined sets of reliable pixels, which is challenging because
of the different sizes of the LRMS and PAN images. To address
this limitation, we formulate the pansharpening task as a more
general tensor rank minimization problem that does not require
sets of reliable pixels. Furthermore, we incorporate the spatial
details of P into the optimization model by employing a
detail injection component. Then, the optimization problem for
pansharpening via tensor rank minimization can be expressed
as

minimize
X

rank(X ) + λfdetail(X ,M,P), (4)

where rank(X ) enforces low-rankness on the desired HRMS
image X ∈ RH×W×C , fdetail(X ,M,P) represents the detail
injection component that incorporates spatial information from
P into X , and λ balances the relative importance of the two
terms. Next, we present a detailed formulation of rank(X )
and fdetail(X ,M,P).

The main challenge in tensor rank-related problems is defin-
ing a tensor rank, which is difficult due to the complex multidi-
mensional relationships between the elements of tensors [47].
Consequently, various definitions of tensor rank have been
proposed from different perspectives. In this work, we employ
a tubal rank via factorization [48] to preserve multidimen-
sional information effectively while achieving computational
efficiency. Specifically, the tensor X ∈ RH×W×C with a tubal
rank r can be factorized into two smaller tensors X = L∗R,
where L ∈ RH×r×C and R ∈ Rr×W×C . By enforcing
a low tubal rank via tensor factorization, the tensor rank
minimization problem in (4) can be rewritten as

minimize
X ,L,R

1

2
∥X −L ∗R∥2F + λfdetail(X ,M,P). (5)

In addition, although HRMS images are often low rank [24],
the tensor rank minimization model in (5) may not accu-
rately represent all the real-world scenarios. For example, the
predefined tubal rank r does not match the true tubal rank,
resulting in low-fidelity reconstruction results. To mitigate
such modeling inaccuracies, we develop an additional implicit
regularizer freg(·) for X . Then, the complete optimization
problem for pansharpening can be rewritten as

minimize
X ,L,R

1

2
∥X−L∗R∥2F+freg(X )+λfdetail(X ,M,P). (6)

In conventional optimization-based algorithms [14]–[24],
including model-based DL algorithms [35]–[42], specific for-
mulations for fdetail(X ,M,P) in (6) were proposed to exploit
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(a) UTeRM-CS

(b) UTeRM-MRA

(c) UTeRM-CNN

Fig. 1. Architectures of (a) CS-, (b) MRA-, and (c) CNN-based detail
injection modules. The operations are performed element-wise, except for
concatenation, which is performed channel-wise.

the spatial information from the PAN images. However, dif-
ferent sensors collect information from different wavelength
ranges, resulting in PAN images with diverse characteristics;
therefore, relying on specific formulations may not effec-
tively represent the spatial details of those images. To over-
come this limitation, we propose an implicit formulation for
fdetail(X ,M,P) as

fdetail(X ,M,P) =
1

2
∥X −XDI∥2F , (7)

where XDI denotes the detail-injected HRMS image for X
computed from M and P. Since the implicit formulation
in (7) can support a generalized design, it enables the flexible
selection of any formulation or implementation for the detail
injection component depending on the characteristics of the
datasets. In this work, we present three implementations of
the generalized detail injection component fdetail(X ,M,P)—
CS-, MRA-, and CNN-based formulations.

1) CS-based Detail Injection (UTeRM-CS): A CS-based
algorithm constructs a desired HRMS image by combining the
PAN image P and upsampled LRMS image M↑ substituted
with the intensity component [49], i.e.,

X (i) = M(i)
↑ + gi × (P− IL), (8)

where gi denotes the global injection coefficient, and IL is
the intensity component computed as the weighted sum of the
channels of M↑. We extend the capability of the CS-based
formulation by computing IL via a 1× 1 convolution, equiv-
alent to performing a weighted sum with learnable weights,
which is expressed as

IL = Conv1×1(M↑). (9)

In addition, we extend the channel-wise coefficient gi to the
pixel-wise weight map G for a more effective detail injection.
To this end, we compute G using the convolutional layers as

G = Conv3×3(ReLU(Conv3×3([M↑,P, IL]))), (10)

where [M↑,P, IL] denotes the concatenation along the chan-
nel dimension. By substituting IL in (9) and G in (10) into (8),
the CS-based detail injection can be reformulated as

X CS
DI = M↑ + G ⊙ (P − IL), (11)

where P and IL are the tensor version of P and IL, re-
spectively, obtained by replicating the matrices C times along
the channel dimension, and ⊙ denotes element-wise multi-
plication. The overall architecture is illustrated in Fig. 1(a).
Then, by substituting (11) into (7), the detail injection
fdetail(X ,M,P) in (7) can be rewritten as

fCS
detail(X ,M,P) =

1

2
∥X − (M↑+G⊙ (P −IL))∥2F . (12)

2) MRA-based Detail Injection (UTeRM-MRA): An MRA-
based algorithm constructs an HRMS image as a combination
of an upsampled LRMS image and high-frequency details
from a PAN image [49] as

X (i) = M(i)
↑ + gi × (P−Plow), (13)

where Plow is the low-pass filtered version of P. Similar to
CS-based detail injection, the weights of the low-pass filter
are learned via convolutional layers. Specifically, a low-pass
filter is implemented using 5× 5 convolutional kernels as

Plow = Conv5×5(ReLU(Conv5×5(P))). (14)

The pixel-wise weight map G is computed similarly, as defined
in (10), i.e.,

G = Conv3×3(ReLU(Conv3×3([M↑,P,Plow]))). (15)

By substituting Plow in (14) and G in (15) into (13), the MRA-
based detail injection can be reformulated as

XMRA
DI = M↑ + G ⊙ (P −P low), (16)

where P and P low are the tensor versions of P and Plow,
respectively. Its architecture is shown in Fig. 1(b). Then, the
detail injection fdetail(X ,M,P) in (7) is reformulated for the
MRA-based approach as

fMRA
detail (X ,M,P) =

1

2
∥X−(M↑+G⊙(P−P low))∥2F . (17)



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 5

3) CNN-based Detail Injection (UTeRM-CNN): Finally,
we formulate a CNN-based detail injection component us-
ing existing pansharpening deep networks. Specifically, let
FCNN(M,P) be the output of a conventional pansharpening
network. Then, the CNN-based detail injection can be formu-
lated as

X CNN
DI = FCNN(M,P). (18)

Thus, the detail injection fdetail(X ,M,P) in (7) becomes

fCNN
detail(X ,M,P) =

1

2
∥X −FCNN(M,P)∥2F . (19)

Its architecture is illustrated in Fig. 1(c). The formulation
of the UTeRM-CNN supports both pretraining and end-to-
end training for FCNN, i.e., FCNN can be pretrained and then
integrated into (26) or trained from scratch with the proposed
algorithm. In this work, we employ FusionNet [13] for FCNN
due to its simplicity.

C. Solution to the Optimization

We solve the optimization problem in (6) iteratively by
employing the augmented Lagrange multiplier method [50].
To this end, we first reformulate the optimization in (6) for
variable splitting using the auxiliary variable V as

minimize
X ,L,R,V

1

2
∥X−L∗R∥2F + freg(V) + λfdetail(X ,M,P),

subject to V = X .
(20)

Then, the augmented Lagrangian function for (20) can be
defined as

L(X ,L,R,V ,Λ) =
1

2
∥X −L ∗R∥2F + freg(V)

+
α

2
∥X − V∥2F + ⟨Λ,X − V⟩+ λfdetail(X ,M,P),

(21)

where α > 0 is the penalty parameter, and Λ ∈ RH×W×C is
the Lagrange multiplier tensor.

The optimal solutions to the problem in (20) are obtained
by minimizing the augmented Lagrangian function L in (21),
i.e.,

(X ∗,L∗,R∗,V∗) = arg min
X ,L,R,V

L(X ,L,R,V ,Λ). (22)

To this end, we employ the alternating direction method of
multipliers [51] because directly solving the joint optimization
problem in (22) is intractable. Specifically, we split the opti-
mization in (22) into subproblems over the individual variables
X , L, R, and V , and the multiplier Λ, and then solve
the subproblems sequentially and iteratively. The following
section details how each subproblem is solved at the k-th
iteration.

X -subproblem: Given Lk, Rk, Vk, and Λk from the
previous (k − 1)-th iteration, we first update X as

X k+1 = arg min
X

1

2
∥X −Lk ∗Rk∥2F +

αk

2
∥X − Vk∥2F

+ ⟨Λk,X − Vk⟩+ λkfdetail(X ,M,P)

= arg min
X

1

2
∥X −Lk ∗Rk∥2F +

αk

2
∥X − Vk∥2F

+ ⟨Λk,X − Vk⟩+
λk

2
∥X −XDI∥2F

=
Lk∗Rk+λkXDI + αkVk−Λk

(1 + λk + αk)1
, (23)

where 1 is an all-ones tensor, and the division is performed
element-wise.

We presented three implementations of the detail injection
component XDI in Section III-B. Therefore, we obtain three
closed-form solutions for each detail injection component.
Specifically, by substituting (11), (16), and (18) into (23)
for XDI, we can readily obtain the respective closed-form
solutions, which are given below.

1) UTeRM-CS:

X k+1 =
Lk∗Rk+λk(M↑+G⊙(P−IL)) + αkVk−Λk

(1 + λk + αk)1
.

(24)

2) UTeRM-MRA:

X k+1 =
Lk∗Rk+λk(M↑+G ⊙ (P−P low))+αkVk−Λk

(1 + λk + αk)1
.

(25)

3) UTeRM-CNN:

X k+1 =
Lk ∗Rk + λkFCNN(M,P) + αkVk −Λk

(1 + λk + αk)1
. (26)

L- and R-subproblems: Then, we update L and R
simultaneously by solving

(Lk+1,Rk+1) = arg min
L,R

1

2
∥(X k+1 −L ∗R)∥2F . (27)

This subproblem can be solved in the Fourier domain to
circumvent the complexity of the t-product [48]. Specifically,
let X̂ k+1 denote the result of the Fourier transform FFFT(·)
of X k+1 along the third dimension, i.e., X̂ k+1(i, j, :) =
FFFT{X k+1(i, j, :)}. Then, the closed-form solutions L̂k+1

and R̂k+1, i.e., the Fourier coefficients for Lk+1 and Rk+1,
respectively, can be computed frontal slice-wise as

L̂(i)
k+1 = arg min

L̂(i)

1

2C

∥∥(L̂(i)∗ R̂(i)
k − X̂ (i)

k+1

)∥∥2
F

= X̂ (i)
k+1

(R̂(i)
k

)H(
R̂(i)

k

(R̂(i)
k

)H)†
, (28)

R̂(i)
k+1 = arg min

R̂(i)

1

2C

∥∥(L̂(i)
k ∗ R̂(i)− X̂ (i)

k+1

)∥∥2
F

=
((L̂(i)

k

)HL̂(i)
k

)†(L̂(i)
k

)HX̂ (i)
k+1. (29)
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Fig. 2. Architecture of the proposed network. The network comprises a generalized detail injection component and K stages of optimization. First, the detail
injection component XDI is obtained by exploiting the LRMS and PAN images. Then, XDI and the LRMS and PAN images are input to a K-stage unfolded
network, where the operations in each stage correspond to the closed-form solutions in an iteration of the iterative algorithm.

Finally, the closed-form solutions Lk+1 and Rk+1 can be
obtained by performing an inverse Fourier transform along
the third dimension as

Lk+1(i, j, :) = F−1
FFT

{L̂k+1(i, j, :)
}
,

Rk+1(i, j, :) = F−1
FFT

{R̂k+1(i, j, :)
}
. (30)

V-subproblem: Next, we update the auxiliary variable V
as

Vk+1 = arg min
V

freg(V) +
αk

2
∥X k+1 − V∥2F
+ ⟨Λk,X k+1 − V⟩

= arg min
V

freg(V) +
αk

2
∥V − (X k+1 + α−1

k Λk)∥2F
= proxfreg

(X k+1 + α−1
k Λk), (31)

where proxfreg
(·) denotes the proximal operator corresponding

to the regularizer freg(·). The regularizer imposes constraints
on variable X , which is tailored to the specific characteristics
of the desired HRMS image, to ensure high-fidelity results.
However, in optimization-based approaches, regularizers are
typically designed based on observations and practical ex-
perience and thus may not represent the wide variety of
characteristics of real-world MS images [35]. To address this
limitation of handcrafted regularizers, we establish a data-
driven regularizer that can effectively represent a wide range
of MS image characteristics. Specifically, the closed-form
solution proxfreg

(·) is computed using a CNN that learns the
visual features from training data to infer the optimal solution
Vk+1. Let fV-CNN be the CNN representing the proximal
operator proxfreg

(·) for the variable V in (31). Then, Vk+1

is computed as

Vk+1 = fV-CNN
(X k+1 + α−1

k Γk;ΘV,k

)
, (32)

where ΘV,k denotes the parameters of fV-CNN at the k-th
iteration.

Algorithm 1 UTeRM: Optimization for Solving (6)
Input: M ∈ Rh×w×C , P ∈ RH×W , r = C/2, and K.

1: Initialize k = 1.
2: Initialize X 0, V0, and Λ0 as zero tensors.
3: Initialize L0 and R0 as tensors of 10−2.
4: Obtain XDI using (11), (16), or (18).
5: while k ≤ K do
6: Update X using (24), (25), or (26) depending on XDI.
7: Update L using (28).
8: Update R using (29).
9: Update V using (32).

10: Update Λ using (33).
11: k = k + 1.
12: end while
Output: X ∗ = XK

Multipliers: Finally, the tensor of Lagrange multiplier Λ is
updated as

Λk+1 = Λk + αk(X k+1 − Vk+1). (33)

The complete UTeRM algorithm with generalized detail
injection is summarized in Algorithm 1.

D. Deep Unfolded Network

Finally, we establish a deep learning architecture for pan-
sharpening by unfolding the iterations of the iterative tensor
rank minimization algorithm developed in the previous section.
Fig. 2 illustrates a deep unfolded network that takes the LRMS
image M and PAN image P as inputs and produces the
HRMS image X ∗.

The proposed network comprises two phases: detail injec-
tion and tensor rank minimization. In the first phase, M
and P are input into the detail injection module described
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in Section III-B to produce XDI. Then, in the second phase,
M, P, and XDI are input into the K-stage unfolded network,
where each stage corresponds to an iteration of the proposed
iterative tensor rank minimization algorithm, as described in
Section III-C. Specifically, the variables X , L, and R are
updated by the closed-form solutions in (23), (28), and (29),
respectively, and the auxiliary variable V is updated by the
CNN-based proximal operator fV-CNN in (32). In addition to
the parameters ΘV,k for fV-CNN, the hyperparameters αk in
(23) and λk in (24), (25), and (26) are adjusted using back-
propagation during the training process. Finally, the output of
the last stage is the desired HRMS image, i.e., X ∗ = XK .

The CNN-based proximal operator fV-CNN is intended to
compensate for modeling inaccuracies by providing infer-
ences based on learned visual features; thus, fV-CNN can
be implemented using any deep network architecture that
can effectively extract features from the training data. For
simplicity, we employ the residual dense block (RDB) [52]
to implement fV-CNN. Specifically, we use an RDB with eight
convolutional layers to construct fV-CNN, which takes the
tensor (X k+1 + α−1

k Γk) as input and produces the optimal
solution Vk+1. We will discuss the effects of the number of
convolutional layers in the RDB in Section IV-D4.

E. Training

To train the proposed algorithm, we define a loss function
that considers the fidelity of the generated HRMS images and
the effect of the detail injection module as

Ltotal = Lfidelity + ωLdetail, (34)

where Lfidelity and Ldetail denote the losses on the pansharpened
and detail injected results, respectively, and ω = 0.25 is the
parameter for balancing the relative importance between the
two terms. The fidelity loss Lfidelity is computed as the ℓ1-
norm of the difference between the ground-truth X gt and the
pansharpened HRMS image X ∗ as

Lfidelity = ∥X gt −X ∗∥1. (35)

The detail injection loss Ldetail is defined similarly to
fdetail(X ,M,P) for the CS-, MRA-, and CNN-based detail
injections, respectively, as

LCS
detail = ∥X gt − (M↑ + G ⊙ (P − IL))∥1, (36)

LMRA
detail = ∥X gt − (M↑ + G ⊙ (P −P low))∥1, (37)

LCNN
detail = ∥X gt −FCNN(M,P)∥1. (38)

We train the proposed network using the Adam opti-
mizer [53] and Ltotal for 90 epochs with a learning rate of
η = 10−5. Then, we fine-tune the network using only Lfidelity
for 10 epochs with η = 10−6. Note that since the Fourier
transform is involved, it is difficult to implement multi-batch
training; thus, the proposed algorithm uses a batch size of one
for training.

IV. EXPERIMENTAL RESULTS

A. Datasets and Settings

We evaluate the performance of the proposed algorithm
against conventional algorithms on three datasets containing

TABLE I
SETTINGS FOR THE DATASETS IN THE EXPERIMENTS

Satellite IKONOS WorldView-2 WorldView-4

Number of MS bands 4 8 4
Size of an MS image 256× 256 256× 256 256× 256

GSD∗ in an MS 4.0 m 2.0 m 1.24 m
Size of a PAN image 1024× 1024 1024× 1024 1024× 1024

GSD∗ in a PAN 1.0 m 0.5 m 0.31 m
Radiometric resolution 11-bit 11-bit 11-bit
Training/test pairs 140/60 350/150 180/90
∗Ground sampling distance

200 MS–PAN image pairs captured by the IKONOS satellite,
500 pairs captured by the WorldView-2 satellite, and 270 pairs
captured by the WorldView-4 satellite [1]. The specifications
of the datasets are provided in Table I. We randomly divide
the IKONOS and WorldView-2 datasets into training (70%)
and testing (30%) sets. To evaluate the generalizability, we
select all MS images from the ‘green vegetation’ and ‘water
scenario’ categories in the WorldView-4 dataset as training set
and those from the ‘urban’ category as testing set.1

Since ground-truths are unavailable, MS and PAN images
are degraded and downsampled using Wald’s protocol [54],
implemented by Vivone et al. [55],2 to generate reduced-
resolution (RR) LRMS and PAN images. Specifically, the MS
images are low-pass filtered using kernels designed to consider
the characteristics of sensors, followed by bicubic interpolation
to generate LRMS images, while PAN images are generated
by bicubic interpolation. The original MS images are used as
the reference HRMS images. In the RR experiment, we set the
resolution ratio to r = 4, i.e., the generated LRMS and PAN
images have resolutions of 64×64 and 256×256, respectively.
The corresponding full-resolution (FR) images of the test set
are used to conduct the FR experiment, i.e., the original MS
and PAN images are used as input. In this work, the tubal rank
r in (5) of the desired HRMS image is empirically set to half
the number of spectral channels.

We compare the performance of all three variants of the
proposed algorithm with those of the state-of-the-art algo-
rithms. We select notable model-based algorithms: MF [11],
BDSD-PC [6], MTF-GLP-HPM-DS [12] (referred to as HPM-
DS), and the latest LRTC approach, LRTCFPan [24]. We also
compare the proposed algorithm with DL-based algorithms—
MSDCNN [27], DiCNN [28], FusionNet [13], MDA-Net [44],
MSDDN [32], TRRNet [33], and PCTINN [34]—and model-
based deep networks—GPPNN [39] and MD3Net [35]. The
source codes for LRTCFPan, GPPNN, MD3Net, MDA-Net,
MSDDN, TRRNet, and PCTINN, were provided by the re-
spective authors, whereas those for the other algorithms were
obtained from the benchmark provided by Deng et al. [49].
The DL-based algorithms, including the proposed UTeRM,
were retrained using each dataset and the settings recom-
mended by the respective authors. The source code and

1The original authors of [1] provided the categories of MS images.
2https://openremotesensing.net/knowledgebase/a-

benchmarking-protocol-for-pansharpening-dataset-
preprocessing-and-quality-assessment
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TABLE II
QUANTITATIVE EVALUATION OF THE REDUCED-RESOLUTION TEST ON THE IKONOS DATASET. THE ↑ AND ↓ SYMBOLS DENOTE “HIGHER IS BETTER”
AND “LOWER IS BETTER,” RESPECTIVELY. FOR EACH METRIC, THE BOLDFACED AND UNDERLINED NUMBERS DENOTE THE BEST AND SECOND-BEST

RESULTS, RESPECTIVELY

PSNR (↑) SSIM (↑) SAM (↓) SCC (↑) ERGAS (↓) Q4 (↑) Dλ (↓) DS (↓) QNR (↑)

BDSD-PC [6] 39.90 0.9320 2.4253 0.9451 1.6990 0.8186 0.0735 0.0972 0.8387
MF [11] 39.20 0.9279 2.4339 0.9416 1.7784 0.8090 0.1210 0.1385 0.7603
HPM-DS [12] 39.95 0.9311 2.3425 0.9453 1.6748 0.8146 0.0945 0.1151 0.8047
LRTCFPan [24] 40.47 0.9342 2.1654 0.9517 1.6002 0.8205 0.0579 0.0568 0.8897
MSDCNN [27] 41.45 0.9527 1.9445 0.9615 1.4083 0.8683 0.0650 0.0862 0.8559
DiCNN [28] 41.24 0.9510 1.9685 0.9603 1.4358 0.8611 0.0605 0.0835 0.8625
FusionNet [13] 41.77 0.9553 1.8543 0.9638 1.3696 0.8786 0.0479 0.0677 0.8887
GPPNN [39] 41.48 0.9574 1.8248 0.9650 1.3893 0.8656 0.0565 0.0787 0.8703
MD3Net [35] 42.32 0.9597 1.7326 0.9677 1.3082 0.8772 0.0487 0.0719 0.8839
MDA-Net [44] 42.24 0.9605 1.7335 0.9685 1.2950 0.8864 0.0461 0.0661 0.8917
MSDDN [32] 42.52 0.9615 1.7026 0.9692 1.2819 0.8855 0.0485 0.0685 0.8872
TRRNet [33] 41.04 0.9511 1.9943 0.9601 1.4658 0.8630 0.0487 0.0611 0.8940
PCTINN [34] 42.40 0.9616 1.7276 0.9684 1.2834 0.8830 0.0509 0.0675 0.8856
UTeRM-CS 42.66 0.9632 1.6616 0.9705 1.2644 0.8859 0.0445 0.0678 0.8915
UTeRM-MRA 42.60 0.9629 1.6689 0.9704 1.2639 0.8864 0.0443 0.0658 0.8936
UTeRM-CNN 42.78 0.9630 1.6514 0.9708 1.2564 0.8874 0.0446 0.0673 0.8919

pretrained models will be released on our project website.3

For quantitative comparisons, in the RR experiments, we use
both full-reference metrics, including PSNR, SSIM [56], spec-
tral angle mapper (SAM) [57], spatial correlation coefficient
(SCC) [58], relative dimensionless global error in synthesis
(ERGAS) [54], and universal image quality index for 2n-
band images (Q2n) [59], and non-reference metrics, including
the spectral distortion index Dλ, spatial distortion index DS ,
and quality without reference (QNR), which is computed
from Dλ and DS [60]. In the FR experiments, we evaluate
the performance of the algorithms using three non-reference
metrics Dλ, DS , and QNR. The PSNR measures the quality
of the pixel value reconstruction, whereas the SSIM measures
the structural similarity between two images. The SAM metric
measures the similarity between the spectra of the HRMS
images, and the SCC metric quantifies the correlation of the
high-frequency components between two HRMS images. The
ERGAS and Q2n metrics measure the spectral distortions of
each band and joint inter- and intra-band, respectively, of the
pansharpened image. The non-reference metrics Dλ and DS

measure the spectral and spatial distortions, respectively, and
QNR is the overall quality index computed from Dλ and
DS . Higher PSNR, SSIM, SCC, Q2n, and QNR scores imply
better results, whereas low SAM, ERGAS, Dλ, and DS scores
indicate better performance.

B. Reduced-Resolution Assessment

1) IKONOS (4-band Sensor): Table II quantitatively com-
pares the pansharpening performance on the IKONOS dataset.
All three variants of the proposed UTeRM outperform all the
conventional algorithms. For example, UTeRM-CNN achieves
2.31 dB and 0.0288 higher PSNR and SSIM scores, respec-
tively, than that of the best model-based algorithm, LRTCF-
Pan [24], indicating the highest fidelity of the pansharpened

3https://github.com/mtntruong/UTeRM

HRMS images. In addition, the proposed algorithm outper-
forms all DL-based algorithms on most metrics because of the
use of a robust low-rank model with a learnable regularizer to
compensate for modeling inaccuracy. For example, UTeRM-
CNN yields 0.26 dB and 0.0015 higher PSNR and SSIM
scores than the best DL-based algorithm MSDDN [32]. Fur-
thermore, these variants provide the best scores in the metrics
for evaluating the HRMS images, i.e., SAM, SCC, ERGAS,
and Q4, indicating the effectiveness of the proposed algorithm
in restoring information across spectral bands. In particular,
UTeRM-CNN achieves the best SAM and Q4 scores, implying
that the spectra of its pansharpened HRMS images are the
most similar to those of the ground-truths. The best SCC and
ERGAS scores of the proposed algorithm indicate high-fidelity
pansharpened results. Note that as CS-based algorithms can
compute more complex transformations with more hyperpa-
rameters [61], UTeRM-CS achieves overall better performance
than UTeRM-MRA for 4-band MS datasets. Finally, UTeRM-
CNN performs the best among the variants because of the
ability of the CNN-based detail injection component to learn
visual features compared to the others.

Fig. 3 compares the pansharpened HRMS images produced
by each algorithm, including bicubic upsampling in Fig. 3(a),
for the 19th image in the IKONOS test set. The CS-based
algorithm BDSD-PC [6] and MRA-based algorithms MF [11]
and HPM-DS [12] yield blurry results as shown in Figs. 3(b)–
(d). LRTCFPan [24] in Fig. 3(e) provides better results by
adopting a low-rank model; however, fine details are lost,
generating blurring artifacts, as it is challenging to deter-
mine the set of reliable pixels. DL-based MSDCNN [27],
DiCNN [28], and FusionNet [13] in Figs. 3(f)–(h) produce
sharper results; however, since they employ CNNs to gener-
ate HRMS images through direct mappings from a pair of
LRMS and PAN images, they severely lose high-frequency
details, e.g., the buildings appear blurry and are unclearly
separated from the background. Although more recent DL-
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(a) Bicubic (b) BDSD-PC [6] (c) MF [11] (d) HPM-DS [12] (e) LRTCFPan [24] (f) MSDCNN [27]

(g) DiCNN [28] (h) FusionNet [13] (i) GPPNN [39] (j) MD3Net [35] (k) MDA-Net [44] (l) MSDDN [32]

(m) TRRNet [33] (n) PCTINN [34] (o) UTeRM-CS (p) UTeRM-MRA (q) UTeRM-CNN (r) Ground-truth

Fig. 3. Comparison of the results for the 19th image of the IKONOS dataset in the RR experiment. The magnified region and corresponding error map
for the red square are shown. The proposed UTeRMs in (o)–(q) generate faithful details, e.g., the buildings in the magnified regions are sharp and clearly
separated from the background.

TABLE III
QUANTITATIVE EVALUATION OF THE REDUCED-RESOLUTION TEST ON THE WORLDVIEW-2 DATASET

PSNR (↑) SSIM (↑) SAM (↓) SCC (↑) ERGAS (↓) Q8 (↑) Dλ (↓) DS (↓) QNR (↑)

BDSD-PC [6] 37.96 0.9241 4.5521 0.9422 3.8493 0.6877 0.0705 0.0838 0.8530
MF [11] 36.31 0.9053 4.5485 0.9274 4.3575 0.6068 0.0954 0.0838 0.8300
HPM-DS [12] 37.02 0.9084 4.6654 0.9282 6.7349 0.6151 0.0779 0.0878 0.8427
LRTCFPan [24] 38.23 0.9289 4.1523 0.9473 3.6676 0.6741 0.0409 0.0564 0.9052
MSDCNN [27] 39.49 0.9574 3.4463 0.9611 3.0664 0.7575 0.0629 0.0687 0.8731
DiCNN [28] 39.48 0.9577 3.4305 0.9618 3.0812 0.7526 0.0554 0.0646 0.8841
FusionNet [13] 39.99 0.9615 3.2481 0.9649 2.8841 0.7699 0.0580 0.0690 0.8775
GPPNN [39] 40.18 0.9644 3.1459 0.9661 2.8153 0.7795 0.0532 0.0641 0.8867
MD3Net [35] 40.31 0.9643 3.1051 0.9670 2.7823 0.7743 0.0509 0.0664 0.8866
MDA-Net [44] 40.49 0.9654 3.0719 0.9691 2.6732 0.7816 0.0521 0.0621 0.8894
MSDDN [32] 40.19 0.9640 3.1073 0.9662 2.8196 0.7727 0.0459 0.0545 0.9025
TRRNet [33] 39.68 0.9600 3.3110 0.9627 2.9865 0.7666 0.0581 0.0573 0.8882
PCTINN [34] 40.07 0.9634 3.1515 0.9651 2.8772 0.7625 0.0499 0.0618 0.8917
UTeRM-CS 40.60 0.9665 3.0159 0.9689 2.6672 0.7840 0.0458 0.0540 0.9028
UTeRM-MRA 40.66 0.9669 2.9911 0.9693 2.6420 0.7849 0.0462 0.0589 0.8979
UTeRM-CNN 40.71 0.9668 2.9967 0.9694 2.6364 0.7846 0.0447 0.0601 0.8982

based algorithms MDA-Net [44], MSDDN [32], TRRNet [33],
and PCTINN [34] in Figs. 3(k)–(n) and model-based deep
networks GPPNN [39] and MD3Net [35] in Figs. 3(i) and (j),
respectively, generate better HRMS images, the fine details
are still unfaithful to the ground-truth, as indicated in the
error maps. Moreover, TRRNet in Fig. 3(m) exhibits color

differences, implying spectral distortions. In contrast, as shown
in Figs. 3(o)–(q), the HRMS images obtained by the proposed
UTeRM-CS, UTeRM-MRA, and UTeRM-CNN are sharper,
and their fine details are faithful to the ground-truth, indi-
cating that the proposed low-rank model effectively captures
the physical properties of MS images without the need for
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(a) Bicubic (b) BDSD-PC [6] (c) MF [11] (d) HPM-DS [12] (e) LRTCFPan [24] (f) MSDCNN [27]

(g) DiCNN [28] (h) FusionNet [13] (i) GPPNN [39] (j) MD3Net [35] (k) MDA-Net [44] (l) MSDDN [32]

(m) TRRNet [33] (n) PCTINN [34] (o) UTeRM-CS (p) UTeRM-MRA (q) UTeRM-CNN (r) Ground-truth

Fig. 4. Comparison of the results for the 150th image in the WorldView-2 dataset in the RR experiment. The proposed UTeRMs in (o)–(q) faithfully recover
the fine details in the magnified regions, while others generate poor textures.

information on reliable pixels.

2) WorldView-2 (8-band Sensor): Table III quantitatively
compares the pansharpening performance of the algorithms on
the WorldView-2 dataset. The results exhibit tendencies similar
to those in Table II. Specifically, all variants of the proposed
UTeRM outperform both model- and DL-based algorithms
by large margins for all full-reference metrics, indicating
the highest fidelity for spectral and spatial details. For non-
reference metrics, UTeRM-CS achieves the lowest DS and
second-highest QNR scores; however, the scores of Dλ and
QNR for UTeRM-CS and the best LRTCFPan are comparable.
Since CS-based algorithms require more hyperparameters than
MRA-based algorithms, estimating accurate results for an 8-
band dataset is challenging [61]. Therefore, contrary to a 4-
band dataset in Table II, UTeRM-MRA outperforms UTeRM-
CS. In addition, UTeRM-MRA and UTeRM-CNN provide
comparable and overall the best results. Specifically, UTeRM-
MRA achieves the best SSIM, SAM, and Q8 scores, indicat-
ing the highest spectral fidelity and lowest inter- and intra-
band spectral distortions. In contrast, UTeRM-CNN yields the
highest PSNR and SCC and lowest ERGAS by restoring the
spatial information more faithfully. This is because the MRA-
based detail injection formulation can accurately model the
complex spectral properties in the 8-band dataset, whereas
the black-box CNN-based detail injection cannotlearn these
features effectively.

Fig. 4 compares the pansharpened HRMS images obtained
by each algorithm for the 150th image in the WorldView-2
test set. In Figs. 4(b)–(d), the model-based algorithms BDSD-
PC, MF, and HPM-DS fail to restore fine details, producing
blurry HRMS images because they have limited capability to
inject the information into the LRMS image, especially when
the LRMS image has poor textures. Although the low-rank-
based LRTCFPan in Fig. 4(e) produces superior performance
in terms of non-reference metrics in Table III, it suffers
from the same weaknesses as other model-based algorithms
due to its MRA-based detail injection. MSDCNN, DiCNN,
and FusionNet in Figs. 4(f)–(h), respectively, produce the
HRMS images with inaccurately restored details because of
the information loss caused by direct mappings. Model-based
deep networks, GPPNN and MD3Net, in Figs. 4(i) and (j),
respectively, and transformer-based TRRNet and PCTINN in
Figs. 4(m) and (n), respectively, generate better HRMS images.
However, they still yield visible artifacts due to inaccurate
restoration. In contrast, the variants of the proposed algorithm
in Figs. 4(o)–(q) restore the HRMS images with details most
faithful to the ground-truth due to the robust tensor rank
minimization model and learnable regularization.

3) WorldView-4 (4-band Sensor): As described in Sec-
tion IV-A, we evaluate the pansharpening performance using
test MS images from the WorldView-4 dataset, which belong
to different categories from those used for training, to assess
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TABLE IV
QUANTITATIVE EVALUATION OF THE REDUCED-RESOLUTION TEST ON THE WORLDVIEW-4 DATASET

PSNR (↑) SSIM (↑) SAM (↓) SCC (↑) ERGAS (↓) Q4 (↑) Dλ (↓) DS (↓) QNR (↑)

BDSD-PC [6] 28.24 0.8253 4.8065 0.9347 4.1015 0.6404 0.0515 0.0941 0.8594
MF [11] 28.63 0.8378 4.6850 0.9391 3.8451 0.6069 0.0954 0.0999 0.8145
HPM-DS [12] 29.03 0.8334 4.9353 0.9420 3.7658 0.6212 0.0871 0.1049 0.8172
LRTCFPan [24] 29.24 0.8398 4.1004 0.9461 3.6632 0.6356 0.0356 0.0599 0.9066
MSDCNN [27] 29.76 0.8663 3.6920 0.9526 3.4172 0.6723 0.0302 0.0554 0.9162
DiCNN [28] 29.62 0.8606 3.7364 0.9508 3.4844 0.6566 0.0327 0.0567 0.9126
FusionNet [13] 29.69 0.8641 3.6671 0.9515 3.4501 0.6742 0.0288 0.0539 0.9189
GPPNN [39] 29.77 0.8742 3.6995 0.9533 3.3991 0.6775 0.0317 0.0575 0.9128
MD3Net [35] 29.91 0.8743 3.6033 0.9540 3.3515 0.6861 0.0342 0.0667 0.9015
MDA-Net [44] 29.89 0.8719 3.5868 0.9557 3.3024 0.6768 0.0202 0.0402 0.9405
MSDDN [32] 29.90 0.8793 3.6595 0.9560 3.3198 0.6541 0.0298 0.0285 0.9428
TRRNet [33] 28.91 0.8589 4.0911 0.9452 3.7558 0.6715 0.0320 0.0506 0.9192
PCTINN [34] 28.97 0.8545 4.1221 0.9429 3.7657 0.6212 0.0243 0.0471 0.9299
UTeRM-CS 29.91 0.8792 3.4599 0.9549 3.3430 0.6850 0.0327 0.0575 0.9119
UTeRM-MRA 29.54 0.8703 3.4854 0.9503 3.5239 0.6797 0.0283 0.0514 0.9219
UTeRM-CNN 30.13 0.8831 3.3980 0.9565 3.2717 0.6949 0.0282 0.0549 0.9186

(a) Bicubic (b) BDSD-PC [6] (c) MF [11] (d) HPM-DS [12] (e) LRTCFPan [24] (f) MSDCNN [27]

(g) DiCNN [28] (h) FusionNet [13] (i) GPPNN [39] (j) MD3Net [35] (k) MDA-Net [44] (l) MSDDN [32]

(m) TRRNet [33] (n) PCTINN [34] (o) UTeRM-CS (p) UTeRM-MRA (q) UTeRM-CNN (r) Ground-truth

Fig. 5. Comparison of the results for the 19th image of the WorldView-4 dataset in the RR experiment. The proposed UTeRMs in (o)–(q) faithfully recover
the fine details in the magnified regions, while others generate blurry textures.

the generalizability. Table IV presents the quantitative assess-
ment results for the pansharpening algorithms. The results
exhibit tendencies similar to the results in Table II. Specif-
ically, the scores in all full-reference metrics of the proposed
UTeRM-CNN consistently remain the highest, indicating its
superior generalizability. In addition, UTeRM-CS achieves
overall better performance than UTeRM-MRA for 4-band

datasets, as discussed previously in the results in Table II.

Fig. 5 compares the pansharpened results of each algorithm
for the 19th image in the WorldView-4 test set. The model-
based algorithms in Figs. 5(b)–(e) produce blurry HRMS
images. The DL-based algorithms in Figs. 4(f)–(n) generate
better pansharpend results; however, they lose the strong edge
information on the buildings in the red rectangles, resulting in
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(a) Bicubic (b) BDSD-PC [6] (c) MF [11] (d) HPM-DS [12] (e) LRTCFPan [24] (f) MSDCNN [27]

(g) DiCNN [28] (h) FusionNet [13] (i) GPPNN [39] (j) MD3Net [35] (k) MDA-Net [44] (l) MSDDN [32]

(m) TRRNet [33] (n) PCTINN [34] (o) UTeRM-CS (p) UTeRM-MRA (q) UTeRM-CNN (r) PAN image

Fig. 6. Comparison of the results for the 18th image of the IKONOS dataset in the FR experiment. The proposed UTeRMs in (o)–(q) generate HRMS
images with finer details compared to others.

large error. In contrast, the variants of the proposed algorithm
in Figs. 4(o)–(q) restore the HRMS images with finer textures
and higher spectral fidelity. These results demonstrate that the
proposed UTeRM has superior generalizability compared to
other DL-based algorithms. Furthermore, note that MDA-Net
and MSDDN in Figs. 4(k) and (l), respectively, provide the
overall best non-reference score, but their visual quality is
significantly inferior to that of the proposed UTeRMs.

C. Full-Resolution Assessment

1) IKONOS (4-band Sensor): Table V quantitatively com-
pares the pansharpening performance of the algorithms on the
IKONOS dataset using non-reference metrics. The proposed
UTeRM-MRA achieves the best DS score, 0.0015 lower
than the second-best TRRNet, indicating the lowest spatial
distortion, whereas spectral distortions in Dλ are comparable
to those of the state-of-the-arts. UTeRM-CNN achieves the
second-best QNR score, comparable to the best algorithm,
MDA-Net, indicating high-fidelity HRMS images. However,
the proposed UTeRM is significantly more efficient than
MDA-Net in terms of the number of trainable parameters and
runtime, as will be discussed in Section IV-E. To summarize,
the proposed algorithm performs comparably to that of the
best MDA-Net on the IKONOS dataset in the FR experiment
due to the tensor rank minimization formulation, effectively
representing the physical properties of the MS images.

Fig. 6 compares the pansharpened HRMS images obtained
by each algorithm for the 18th image of the IKONOS test

TABLE V
QUANTITATIVE EVALUATION OF THE FULL-RESOLUTION TEST ON THE

IKONOS DATASET

Dλ (↓) DS (↓) QNR (↑)

BDSD-PC [6] 0.0875 0.1157 0.8103
MF [11] 0.1392 0.1528 0.7315
HPM-DS [12] 0.1029 0.1216 0.7905
LRTCFPan [24] 0.0897 0.0991 0.8218
MSDCNN [27] 0.0482 0.0476 0.9086
DiCNN [28] 0.0464 0.0514 0.9066
FusionNet [13] 0.0528 0.0424 0.9085
GPPNN [39] 0.0679 0.0533 0.8847
MD3Net [35] 0.0620 0.0415 0.9001
MDA-Net [44] 0.0463 0.0381 0.9191
MSDDN [32] 0.0699 0.0477 0.8868
TRRNet [33] 0.0554 0.0380 0.9092
PCTINN [34] 0.0514 0.0454 0.9068
UTeRM-CS 0.0639 0.0440 0.8963
UTeRM-MRA 0.0613 0.0365 0.9053
UTeRM-CNN 0.0519 0.0394 0.9119

set. The corresponding PAN image is included for a reference
in Fig. 6(r). In Figs. 6(b)–(e), MF, BDSD-PC, HPM-DS, and
LRTCFPan generate jagged edges in the yellow rectangles and
blurry results in the red rectangles due to the failure of the
detail extraction from the PAN image. In addition, MSDCNN,
DiCNN, and FusionNet in Figs. 6(f)–(h) also generate visible
artifacts because their CNN-based mappings learn insuffi-
cient visual features for HRMS image reconstruction. Further,
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(a) Bicubic (b) BDSD-PC [6] (c) MF [11] (d) HPM-DS [12] (e) LRTCFPan [24] (f) MSDCNN [27]

(g) DiCNN [28] (h) FusionNet [13] (i) GPPNN [39] (j) MD3Net [35] (k) MDA-Net [44] (l) MSDDN [32]

(m) TRRNet [33] (n) PCTINN [34] (o) UTeRM-CS (p) UTeRM-MRA (q) UTeRM-CNN (r) PAN image

Fig. 7. Comparison of the results for the 144th image of the WorldView-2 dataset in the FR experiment. The proposed UTeRMs in (o)–(q) provide results
with clearer and sharper textures on the roads and vehicles compared to others.

MDA-Net, MSDDN, and PCTINN in Figs. 6(k), (l), and (n),
respectively, degrade the quality due to over-sharpening, gen-
erating ringing artifacts in the yellow rectangles, whereas
TRRNet in Fig. 6(m) exhibits spectral distortions. GPPNN
and MD3Net in Figs. 6(i) and (j), respectively, generate better
HRMS images, but their results still exhibit blurry artifacts in
the regions indicated by the arrows. In contrast, the proposed
UTeRMs in Figs. 6(o)–(q) produce HRMS images with rich
details without visible artifacts, proving the effectiveness of
the tensor rank minimization model.

2) WorldView-2 (8-band Sensor): Table VI quantitatively
compares the pansharpening performance of the algorithms
on the WorldView-2 dataset using non-reference metrics. The
proposed UTeRM-CS provides the overall best FR pansharp-
ening performance. Specifically, it exhibits 0.0448 lower DS

and 0.0132 higher QNR scores than the second-best algo-
rithm, MSDDN, indicating its superior performance in terms
of spatial and spectral distortions. This result also confirms
the effectiveness of the proposed tensor rank minimization
and generalized detail injection component, which can be
flexibly modified to achieve better results based on various
requirements.

Fig. 7 compares the pansharpened results of each algorithm
for the 144th image in the WorldView-2 test set. They exhibit
tendencies similar to those in Fig. 6. Specifically, since the
PAN image in Fig. 7(r) has low contrast with poor details,
the model-based algorithms in Figs. 7(b)–(e) fail to extract
details from the PAN image, yielding blurry textures, e.g., the

TABLE VI
QUANTITATIVE EVALUATION OF THE FULL-RESOLUTION TEST ON THE

WORLDVIEW-2 DATASET

Dλ (↓) DS (↓) QNR (↑)

BDSD-PC [6] 0.1446 0.1529 0.7465
MF [11] 0.1602 0.1751 0.7066
HPM-DS [12] 0.1424 0.1675 0.7302
LRTCFPan [24] 0.1219 0.1489 0.7559
MSDCNN [27] 0.1594 0.1643 0.7320
DiCNN [28] 0.1157 0.1470 0.7730
FusionNet [13] 0.1313 0.1528 0.7570
GPPNN [39] 0.1649 0.1714 0.7171
MD3Net [35] 0.1183 0.1495 0.7673
MDA-Net [44] 0.1197 0.1466 0.7674
MSDDN [32] 0.1158 0.1364 0.7810
TRRNet [33] 0.1590 0.1453 0.7424
PCTINN [34] 0.1233 0.1578 0.7558
UTeRM-CS 0.1371 0.0916 0.7942
UTeRM-MRA 0.1261 0.1429 0.7673
UTeRM-CNN 0.1378 0.1553 0.7473

roads. Further, MSDCNN, DiCNN, FusionNet, and MDA-Net
in Figs. 7(f)–(h) and (k), respectively, result in color artifacts
in the zoomed rectangles, e.g., the vehicles in the yellow
rectangles. Moreover, GPPNN and MD3Net generate spectral
and spatial distortions. For example, GPPNN in Fig. 7(i) yields
color artifacts in the cars, and MD3Net in Fig. 7(j) produces
blurry artifacts in the roads. In addition, MSDDN, TRRNet,
and PCTINN in Figs. 7(l)–(n) generate better results; however,
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(a) Bicubic (b) BDSD-PC [6] (c) MF [11] (d) HPM-DS [12] (e) LRTCFPan [24] (f) MSDCNN [27]

(g) DiCNN [28] (h) FusionNet [13] (i) GPPNN [39] (j) MD3Net [35] (k) MDA-Net [44] (l) MSDDN [32]

(m) TRRNet [33] (n) PCTINN [34] (o) UTeRM-CS (p) UTeRM-MRA (q) UTeRM-CNN (r) PAN image

Fig. 8. Comparison of the results for the 16th image of the WorldView-4 dataset in the FR experiment. The proposed UTeRMs in (o)–(q) provide results
with clearer and sharper textures on the buildings.

TABLE VII
QUANTITATIVE EVALUATION OF THE FULL-RESOLUTION TEST ON THE

WORLDVIEW-4 DATASET

Dλ (↓) DS (↓) QNR (↑)

BDSD-PC [6] 0.0178 0.0810 0.9027
MF [11] 0.0628 0.0849 0.8576
HPM-DS [12] 0.0452 0.0731 0.8849
LRTCFPan [24] 0.0178 0.0313 0.9514
MSDCNN [27] 0.0292 0.0452 0.9269
DiCNN [28] 0.0116 0.0528 0.9364
FusionNet [13] 0.0252 0.0472 0.9289
GPPNN [39] 0.0356 0.0649 0.9019
MD3Net [35] 0.0263 0.0580 0.9173
MDA-Net [44] 0.0412 0.0474 0.9135
MSDDN [32] 0.0256 0.0590 0.9170
TRRNet [33] 0.0474 0.0720 0.8842
PCTINN [34] 0.0267 0.0623 0.9127
UTeRM-CS 0.0274 0.0518 0.9222
UTeRM-MRA 0.0379 0.0516 0.9124
UTeRM-CNN 0.0274 0.0531 0.9209

spatial distortions persist, noticeable in the thin and blurry
textures of the roads. In contrast, the proposed UTeRMs in
Figs. 7(o)–(q) provide results containing fine texture details
without visible artifacts.

3) WorldView-4 (4-band Sensor): As similarly done in
Section IV-B3, we evaluate the generalizability of the pro-
posed UTeRM using test MS images from categories that are
different from those used for training on the WorldView-4

dataset. Table VII quantitatively compares the pansharpening
performance using non-reference metrics. The results exhibit
tendencies similar to those in Table III. Note that, because
ground truth is unavailable, the scores are computed by
considering LRMS and PAN images as references. Thus, they
may not measure the quality of pansharpened images [62]
accurately; for example, blurry textures or low inter-band
correlation may increase the scores. In particular, although
LRTCFPan achieves the best overall performance and DiCNN
the second-best, their results contain blurry artifacts, as shown
in Fig. 8(e) and (g), respectively, thus degrading the image
quality. Nevertheless, the proposed UTeRM-CS outperforms
most DL-based algorithms—DiCNN, GPPNN, MD3Net, MS-
DDN, TRRNet, and PCTINN on DS and GPPNN, MD3Net,
MDA-Net, MSDDN, and TRRNet on QNR—while achieving
results that are comparable to those of the best algorithms.

Fig. 8 compares the pansharpened HRMS images of the
16th image in the WorldView-4 test set. In Figs. 8(b)–(e),
the model-based algorithms yield blurry textures, e.g., the
edges of trees and buildings in the yellow and red rectangles,
respectively, as they fail to effectively inject details from
the PAN images. MSDCNN in Fig. 8(f) severely degrades
textures, while DiCNN, FusionNet, GPPNN, and MD3Net in
Figs. 8(g)–(j) lose fine details due to blurring artifacts. The re-
sult of TRRNet exhibits spectral distortion, i.e., color change,
in the yellow rectangle in Fig. 8(m). In contrast, the proposed
UTeRMs in Figs. 8(o)–(q) faithfully retain the fine details in
the PAN image without visible spectral distortion compared to
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TABLE VIII
EFFECTS OF LOW-RANK (LR), LEARNABLE REGULARIZER (R), AND

DETAIL INJECTION (DI) ON PANSHARPENING PERFORMANCE

LR R DI PSNR
(↑)

SSIM
(↑)

SAM
(↓)

SCC
(↑)

ERGAS
(↓)

Q4
(↑)

✓ ✓ 23.30 0.6689 10.1465 0.0029 14.9680 0.6872
✓ ✓ 34.20 0.9166 3.4323 0.9520 2.9455 0.6970

✓ ✓ 42.18 0.9587 1.7604 0.9669 1.3286 0.8792
✓ ✓ ✓ 42.78 0.9630 1.6514 0.9708 1.2564 0.8874

(a) (b) (c)

(d) (e) (f)

Fig. 9. Pansharpened results at intermediate stages. The pansharpened results
at stages (a) k = 2, (b) k = 4, (c) k = 6, (d) k = 8, (e) k = 10 (final),
and (f) ground-truth. The lower right corner of each image displays the
corresponding error map.

the other state-of-the-art algorithms, which reveals its superior
generalizability.

D. Ablation Studies

We conduct several ablation studies to analyze the effects
of components in the proposed algorithm on performance. All
the experiments are performed on the RR IKONOS dataset
using the CNN-based detail injection (UTeRM-CNN).

1) Components in the Optimization Model: The proposed
UTeRM is developed based on the tensor rank minimization
model in (6), which comprises the low-rank term ∥X − L ∗
R∥2F , tlearnable regularizer freg(X ), and detail injection term
fdetail(X ,M,P). We analyze the contribution of each term
to the pansharpening performance by training the network
with different combinations. Table VIII compares the results.
Without the detail injection term, the proposed UTeRM yields
the worst performance due to lack of information from the
PAN images. Without the regularizer, the deep unfolded al-
gorithm becomes a traditional iterative algorithm; however,
its performance is inferior due to an insufficient number of
iterations and modeling inaccuracies. If only the regularizer
and detail injection term are used, the proposed UTeRM is a
regularized FusionNet, which outperforms FusionNet because
of the regularization. These results confirm that all three
components contribute to the superiority of the proposed
algorithm, especially detail injection and learnable regularizer.

TABLE IX
EFFECTS OF LOSS FUNCTIONS ON PANSHARPENING PERFORMANCE

PSNR (↑) SSIM (↑) SAM (↓) SCC (↑) ERGAS (↓) Q4 (↑)

ℓ1 42.78 0.9630 1.6514 0.9708 1.2564 0.8874
ℓ2 42.54 0.9620 1.6965 0.9691 1.2732 0.8869

TABLE X
EFFECTS OF ω IN LOSS FUNCTION ON PANSHARPENING PERFORMANCE

ω PSNR (↑) SSIM (↑) SAM (↓) SCC (↑) ERGAS (↓) Q4 (↑)

0 42.46 0.9619 1.6935 0.9691 1.2842 0.8808
0.25 42.78 0.9630 1.6514 0.9708 1.2564 0.8874
0.50 42.74 0.9628 1.6574 0.9706 1.2601 0.8876
0.75 42.68 0.9623 1.6709 0.9702 1.2689 0.8846
1 42.68 0.9625 1.6667 0.9702 1.2645 0.8857

2) Interpretability: Because the proposed UTeRM is devel-
oped based on mathematical formulation, i.e., tensor rank min-
imization, the proposed network inherits the interpretability of
the theoretical model and its optimal solution. We analyze
the interpretability of the proposed UTeRM by visualizing
intermediate results at selected stages. Specifically, Fig. 9
shows the pansharpened results of a test image in the IKONOS
dataset at every two stages. As the stage advances, the details
in the pansharpened HRMS gradually become finer, resulting
in a progressive reduction of errors. These intermediate results
demonstrate that the behavior of UTeRM follows that of the
optimization model, wherein the results are refined throughout
the iterations.

3) Loss Functions: Conventional DL-based pansharpening
algorithms employ either the ℓ1- or ℓ2-norm loss functions for
training. To analyze the effects of loss functions on the perfor-
mance of the proposed algorithm, we train the network using
different loss functions. Table IX quantitatively compares the
results. The ℓ1-norm provides superior pansharpened results
for all metrics. This is because the ℓ1-norm encourages the
network to yield sharper images, resulting in better spectral
and spatial fidelity.

Next, we analyze the impacts of the two losses on the
fidelity of the HRMS image and detail injection in (34) by
training the network with different values of ω. Table X
compares the results. When ω = 0, i.e., when only fidelity is
considered, the worst performance is obtained. As ω increases,
the performance improves because more details are injected
into the output HRMS image. However, increasing ω too much
degrades the performance because it reduces the relative im-
portance of the low-rank term, thereby compromising the low-
rank property of the pansharpened HRMS image. Therefore,
we choose ω = 0.25 to achieve overall the best performance.

4) Architecture of the CNN-Based Proximal Operator: We
perform an in-depth analysis to assess the effects of the archi-
tecture of the CNN-based proximal operator fV-CNN( · ;ΘV)
in (32) on the pansharpening performance. To this end, we
train the proposed algorithm with different numbers of con-
volutional layers in the RDB in fV-CNN( · ;ΘV). Table XI
compares the pansharpening performance under different set-
tings. As the number of convolutional layers increases, the
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TABLE XI
EFFECTS OF THE NUMBER OF CONVOLUTIONAL LAYERS IN THE RDB IN

fV -CNN ON PANSHARPENING PERFORMANCE

# PSNR (↑) SSIM (↑) SAM (↓) SCC (↑) ERGAS (↓) Q4 (↑)

6 42.67 0.9621 1.6711 0.9702 1.2687 0.8851
7 42.69 0.9622 1.6679 0.9702 1.2661 0.8848
8 42.78 0.9630 1.6514 0.9708 1.2564 0.8874
9 42.83 0.9633 1.6443 0.9711 1.2525 0.8866
10 42.82 0.9635 1.6444 0.9711 1.2524 0.8869

TABLE XII
EFFECTS OF THE NUMBER OF UNFOLDED ITERATIONS K ON

PANSHARPENING PERFORMANCE

K PSNR (↑) SSIM (↑) SAM (↓) SCC (↑) ERGAS (↓) Q4 (↑)

5 42.50 0.9606 1.7051 0.9690 1.2894 0.8826
10 42.78 0.9630 1.6514 0.9708 1.2564 0.8874
15 42.85 0.9636 1.6373 0.9712 1.2478 0.8875
20 42.80 0.9632 1.6446 0.9709 1.2550 0.8886

performance improves because of the increased amount of
learned features. However, an excessive increase in the number
of convolutional layers causes the performance to degrade
because it becomes more difficult for the training process to
reach convergence while increasing the number of network
parameters. Therefore, for the best performance-complexity
trade-off, we use an RDB with eight convolutional layers to
establish fV-CNN( · ;ΘV).

5) Unfolded Iteration: To analyze the effects of the number
of unfolded iterations, or equivalent stages, K on the pan-
sharpening performance, we train the network with different
values of K. Table XII compares the results. The proposed al-
gorithm produces the worst pansharpened results when K = 5
because the CNN-based proximal operator learns insufficient
information. As K increases, the number of learned features of
fV-CNN also increases, and tensor rank minimization achieves
better convergence, improving the pansharpening performance.
However, an excessive increase in the number of unfolded
iterations negatively affects performance due to the higher
number of trainable parameters, similar to the increase in
the number of convolutional layers in the RDB in fV-CNN.
Therefore, we select K = 10 to achieve the best balance
between performance and computational complexity.

E. Computational Complexity

We analyze the computational complexities in terms of
the number of network parameters and average runtimes of
the proposed and state-of-the-art algorithms for processing
60 images from the test set of the IKONOS dataset in
the RR experiment. In this test, we use a computer with
an AMD Ryzen CPU clocked at 3.8 GHz and an Nvidia
RTX3090 GPU. Table XIII compares the results. The proposed
UTeRM is significantly more efficient than LRTCFPan [24],
an iterative low-rank tensor-based algorithm. This is because
LRTCFPan requires the computationally expensive singular
value decomposition to compute the convex surrogate for the
tensor rank. In contrast, the proposed formulation avoids the

TABLE XIII
COMPARISON OF RUNTIMES AND NUMBERS OF PARAMETERS

Time (ms) # Param. (K)

MF [11] 19.93 -
BDSD-PC [6] 17.78 -
HPM-DS [12] 29.75 -
LRTCFPan [24] 12 638.13 -
MSDCNN [27] 24.76 190
DiCNN [28] 15.49 42
FusionNet [13] 15.68 76
GPPNN [39] 16.01 120
MD3Net [35] 16.04 152
MDA-Net [44] 91.90 11 979
MSDDN [32] 16.73 670
TRRNet [33] 46.68 2116
PCTINN [34] 54.41 63
UTeRM-CS 59.64 4310
UTeRM-MRA 60.82 4310
UTeRM-CNN 59.45 4386

need for it. Except for MDA-Net, which has the most compli-
cated architecture, the DL-based algorithms are more efficient
than the proposed UTeRM because UTeRM uses the Fourier
transform in (28) and (29) in each block, which is slower
than convolution operations. In addition, despite their larger
model sizes, the runtimes of UTeRM are comparable to those
of the transformer-based algorithms, TRRNet and PCTINN.
However, it should be noted that the proposed UTeRM yields
the best performance, as discussed in Sections IV-B and IV-C.
In addition, fV-CNN can be implemented using any network as
discussed in Section III-D; therefore, more effective and less
complex architectures can be employed to reduce complexity.

V. CONCLUSION

We proposed a deep unfolding algorithm for pansharpening
that exploits the low-rankness of MS images. First, we formu-
lated the pansharpening task as a tensor rank minimization
problem with a generalized detail injection formulation to
exploit the details from PAN images. Furthermore, we defined
an implicit regularization function to compensate for the
potential modeling inaccuracies of low-rankness. Then, we
solve the tensor rank minimization problem using an iterative
technique. Finally, we unfolded the iterative algorithm into
a multistage deep network, where the optimization variables
and a regularizer were solved using closed-form solutions
and learned CNN, respectively. In contrast to existing low-
rank-based algorithms, the proposed tensor rank minimization
formulation can preserve the multidimensional structures of
MS images more effectively without relying on observed
entries. Moreover, the proposed detail injection component
can be flexibly implemented because of its generalized design.
Experimental results on various MS image datasets demon-
strated that the proposed algorithm achieves state-of-the-art
pansharpening performance.
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