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Abstract—Low-rank tensor completion (LRTC) aims to recover missing data of high-dimensional structures from a limited set of
observed entries. Despite recent significant successes, the original structures of data tensors are still not effectively preserved in
LRTC algorithms, yielding less accurate restoration results. Moreover, LRTC algorithms often incur high computational costs, which
hinder their applicability. In this work, we propose an attention-guided low-rank tensor completion (AGTC) algorithm, which can faithfully
restore the original structures of data tensors using deep unfolding attention-guided tensor factorization. First, we formulate the LRTC
task as a robust factorization problem based on low-rank and sparse error assumptions. Low-rank tensor recovery is guided by an
attention mechanism to better preserve the structures of the original data. We also develop implicit regularizers to compensate for
modeling inaccuracies. Then, we solve the optimization problem by employing an iterative technique. Finally, we design a multistage
deep network by unfolding the iterative algorithm, where each stage corresponds to an iteration of the algorithm; at each stage, the
optimization variables and regularizers are updated by closed-form solutions and learned deep networks, respectively. Experimental
results for high dynamic range imaging and hyperspectral image restoration show that the proposed algorithm outperforms state-of-the-
art algorithms.

Index Terms—Low-rank tensor completion, robust tensor factorization, algorithm unrolling, high dynamic range (HDR) imaging,
hyperspectral image (HSI) restoration.
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1 INTRODUCTION

T ENSORS are multidimensional arrays of numerical val-
ues, which can be regarded as high-dimensional gener-

alizations of vectors and matrices. In particular, tensors are
a natural way to represent and store captured real-world
signals. For instance, color images are 3rd-order tensors
because they are combined 2D arrays, and color videos are
4th-order tensors because they are sets of coherent color
images along the time dimension. However, the quality of
signals is often affected by hardware limitations and distur-
bances, which lead to inaccuracies and measurement errors,
resulting in data tensors being corrupted and damaged.
Restoration of corrupted tensors occurs in a wide range of
image processing and computer vision applications, such
as image restoration [1], hyperspectral image (HSI) restora-
tion [2], video completion [3], inpainting [4], and high
dynamic range (HDR) imaging [5].

A common assumption in tensor recovery is that mul-
tidimensional signals, such as images and videos, often ex-
hibit (approximately) low rank [6], [7]. Therefore, low-rank
tensor completion (LRTC) algorithms have been developed
to recover latent clean tensors from a small number of
observed entries under the assumption of linear dependen-
cies between their elements. Specifically, given an nth-order
corrupted data tensor D with a set of observed entries Ω, a
generic LRTC problem that estimates missing elements can
be formulated as

minimize
X

rank(X )

subject to X (i1, . . . , in) = D(i1, . . . , in),

∀(i1, . . . , in) ∈ Ω. (1)

Note that the LRTC can be regarded as a generalization
of low-rank matrix completion [8] because matrices are
technically 2nd-order tensors. However, because the higher-
dimensional structures of tensors lead to more complex

intrinsic properties, different definitions of tensor rank [9],
[10], [11], [12], [13] have been proposed to characterize the
low-rankness of tensors from different aspects, resulting in
different LRTC approaches for each application [14].

Although LRTC algorithms employing several tensor
rank definitions have achieved significant success for image
processing and computer vision tasks [15], they may fail to
preserve the original structures of the data tensors because
they focus on optimizing the convex surrogates of the ten-
sor ranks, thereby overlooking the structural information
and spatial dependencies in the latent tensors. In addition,
because the true signal tensors are only approximately low
rank in practice [14], the restoration results may be inaccu-
rate. Several priors and constraints have been proposed to
address this issue [2], [3], [16], [17]. However, since these pri-
ors were constructed by observing a small number of local
samples, their generalizability is limited. For example, the
priors are often in the form of norms, such as the ℓ1-norm
of gradient ∥∇X∥1 or the total variation norm ∥X∥TV,
which are ineffective in capturing the spatial dependencies
and high-level structures in the underlying data. Moreover,
highly complex operators, such as singular value decom-
position (SVD), are often employed to compute the convex
surrogates of the tensor ranks, resulting in computationally
expensive algorithms.

Recently, deep learning techniques using convolutional
neural networks (CNNs) have been actively developed for
image processing and computer vision tasks [18] due to
their powerful feature learning and inference. Motivated
by these successes, CNN-aided LRTC algorithms [5], [19],
[20], [21], [22], [23], [24], [25], [26] have been proposed to
exploit the capability of CNNs to mitigate the aforemen-
tioned limitations of purely model-based LRTC algorithms.
However, although CNNs have proven their effectiveness in
enhancing tensor recovery performance, the desired struc-



2

tures of the restored tensors have not been fully considered
and modeled in CNN-aided LRTC algorithms. Therefore,
preserving and restoring the original structure of corrupted
data remains an open challenge. Moreover, because con-
ventional CNN-aided LRTC algorithms require complex
operators such as SVD along with complicated CNNs, they
are computationally expensive.

In this work, to address the aforementioned challenges in
LRTC, we develop an attention-guided LRTC algorithm via
deep unfolding robust tensor factorization, called attention-
guided tensor completion (AGTC), which effectively pre-
serves the original structures of data tensors. First, we for-
mulate the LRTC task as a robust tensor factorization prob-
lem that decomposes an input data tensor into a target low-
rank tensor and a sparse error component by integrating an
attention mechanism. A CNN-based attention mechanism
guides low-rank tensor recovery to effectively localize im-
portant regions, thereby preserving multidimensional spa-
tial dependencies and ensuring a more faithful restoration
of the original structures of tensors. Next, since real-world
data may not accurately follow low-rank and sparse error
assumptions, we compensate for the modeling inaccuracies
by exploiting the capability of CNNs to learn visual features
from real data. Specifically, we define CNN-based learnable
regularizers instead of explicit mathematical expressions.
We then iteratively solve the tensor factorization problem by
employing an algorithm unrolling strategy [27]. To this end,
we design a multistage deep network wherein the optimiza-
tion variables are updated in each stage by either closed-
form or CNN-based solutions. Integration of the learnable
regularizers into LRTC enables superior generalizability
to fully deep learning-based algorithms by combining the
advantages of the theoretical foundation of mathematical
models and the capability of CNNs to compensate for the
modeling inaccuracies via learning from data.

In summary, we make the following contributions.
• We propose a new attention-guided LRTC algorithm

that can effectively preserve the high-level structural
information of data tensors. To this end, we formulate
the LRTC task as a tensor factorization problem by
integrating an attention mechanism, focusing on salient
regions to better preserve and restore the original tensor
structures. Due to the improved representation the at-
tention provides, the proposed AGTC requires minimal
learned information and training data, thus reducing
the complexity. In addition, we define two learnable
regularizers to compensate for the modeling inaccura-
cies. Then, we solve the attention-guided LRTC prob-
lem iteratively using the augmented Lagrange multi-
plier (ALM) method.

• We develop a deep neural network for the attention-
guided LRTC using an ALM-based iterative algorithm
by employing an algorithm unrolling strategy. Specif-
ically, we unfold the iterations of the algorithm into a
multistage network, where each stage in the network
corresponds to an iteration. In each stage, the optimiza-
tion variables are updated in two phases: reconstruction
by closed-form solutions and regularization by CNN-
based regularizers.

• We experimentally demonstrate that the proposed al-
gorithm can overcome the limitations of state-of-the-art

algorithms in preserving tensor structures while requir-
ing fewer training samples to produce better restoration
results in two practical applications: HDR imaging and
HSI restoration. We also analyze the effectiveness of
the attention on the performance. Furthermore, we
show that the proposed algorithm is computationally
more efficient than conventional CNN-aided LRTC al-
gorithms.

The remainder of this paper is organized as follows.
Section 2 reviews related work. Section 3 describes the
proposed AGTC algorithm, and Section 4 discusses the
experimental results. Finally, Section 5 concludes the paper.

2 RELATED WORK

2.1 Low-rank Tensor Completion
The multidimensional structures of tensors lead to complex
intrinsic properties. Therefore, different definitions of tensor
ranks have been proposed to characterize the rank of tensors
from different aspects. The most commonly used definitions
of the tensor rank are the CANDECOMP/PARAFAC (CP)
rank [9], Tucker rank [10], tensor train rank [11], tensor ring
rank [12], and tensor tubal rank [13]. Different algorithms
for the LRTC have been developed due to these different
definitions.

The CP rank [9] is defined as the lowest number of
rank-one tensors, i.e., the vectors that form the given tensor.
Although the CP rank has achieved significant successes
in both theoretical aspects [28], [29] and practical applica-
tions [30], [31], [32], LRTC employing the CP rank remains
challenging because determining an optimal CP decomposi-
tion is an NP-hard problem [33]. Thus, several definitions of
tensor rank have been proposed for efficient representation
of the multidimensional dependencies of tensors.

The Tucker rank [10] was defined based on the ranks
of all unfolded matrices of the given tensor along all di-
mensions. Because this definition is based on the matrix
rank, convex surrogates for matrix rank can be used to form
a convex surrogate of the Tucker rank [7]. Therefore, the
Tucker rank has been adapted to several data completion
applications [34], [35], [36]. However, the Tucker rank can-
not capture the global correlations between the unfolding
modes as the tensors are unfolded into matrices and thus
lose their original structures [37].

The tensor train rank [11] and tensor ring rank [12],
which are computed from a train or ring of interconnected
core tensors decomposed from a given tensor, respectively,
were proposed to overcome the limitations of the Tucker
rank. The tensor train rank can better capture global cor-
relations and thus improve the tensor restoration perfor-
mance [37], [38], [39]. The tensor ring rank [12], which is
a generalization of the tensor train rank, has also achieved
significant success [17], [40], [41]. However, algorithms em-
ploying the tensor train rank and tensor ring rank still suffer
from heavy computations due to their complex decomposi-
tion.

The tubal rank [13] was proposed for 3rd-order ten-
sors based on tensor SVD (t-SVD) [42], which can char-
acterize low-rank properties better than other definitions
while avoiding information loss [13], [42]. The tubal nu-
clear norm [43], a convex surrogate for tubal rank, has
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been widely adopted in LRTC models for various imaging
and vision tasks because they can be represented by 3rd-
order tensors [3], [44], [45]. Furthermore, attempts to extend
the tubal rank for higher-dimensional tensors have been
made [46], [47]. The tubal rank has superior modeling ability
of low-rank structures and has shown state-of-the-art per-
formance in LRTC applications [8], [44], [45], [48]. However,
although LRTC algorithms employing the tubal rank have
shown some advantages, they require SVD to compute the
singular tensors, which is computationally expensive.

Although extensive research efforts have been made
for LRTC algorithms using different definitions of tensor
ranks, the original structures of the data tensors are still
not fully considered in their mathematical models, yielding
less accurate restoration results. Furthermore, a solution to
the optimization problem may become inaccurate because
there are cases in which the true signal tensors are only
approximately low rank.

2.2 CNN-aided Low-rank Tensor Completion

CNN-aided LRTC algorithms have been developed to over-
come the limitations of mathematical models by exploiting
the capability of CNNs to learn diverse features from data
and perform complex inferences. For example, CNNs were
integrated into LRTC formulations to learn priors by ex-
tracting latent features from data [20], [23], [24], [25]. LRTC
algorithms also transform data tensors into other domains
using CNNs to represent low-rank structures more effec-
tively. For example, Bragilevsky and Bajić [19] employed
CNNs to transform the input image to the feature domain
and then developed an LRTC algorithm to recover the
deep feature tensor. Liu et al. [22] and Wang et al. [26]
developed nonlinear transforms to model low-rank tensors
using CNNs. Luo et al. [21] proposed an LRTC-based HSI
recovery in a transform domain where the transformation
was performed using a CNN via self-supervised learning.
Mai et al. [5] proposed an explainable HDR imaging algo-
rithm by unfolding an iterative LRTC algorithm into a deep
network with CNN-based proximal operators.

Despite the significant success achieved by employing
CNNs, mathematical models employed in conventional
CNN-aided LRTC algorithms are still ineffective in captur-
ing the desired structural information and spatial depen-
dencies of the restored tensors due to their norm-based
formulations, such as [5], [20], [45]; this establishes the
problem of faithfully preserving and restoring the original
structures of corrupted data as an open challenge. Moreover,
conventional CNN-aided LRTC algorithms remain compu-
tationally expensive since they require complex operators,
such as SVD in [20], and complicated deep neural networks
as in [5].

2.3 Algorithm Unfolding

Algorithm unfolding [27] is a technique that turns a model-
based iterative algorithm into a multistage deep network,
where each stage corresponds to a single iteration of the
algorithm. Therefore, algorithm unrolling benefits from the
advantage of both approaches, i.e., better performance and
interpretability, by combining the theoretical robustness of

the iterative algorithms with the data-driven learning ca-
pability of deep networks. Because of its advantages, algo-
rithm unfolding has achieved significant success in a wide
range of imaging and computer vision applications.

Algorithm unfolding was first developed for sparse
coding and compressive sensing [49], which are primarily
iterative algorithms. Later, algorithm unfolding has been
employed to learn unknown model parameters, such as
diffusion filters [50], blur kernels [51], and measurement
matrices [52], in various imaging applications. In addition,
in low-level computer vision tasks, the prior and regular-
ization terms, such as sparse prior [53], denoising prior [54],
[55], Gaussian prior [56], and degradation priors [57], [58],
[59], were learned using algorithm unfolding. In this work,
we propose an attention-guided and computationally effi-
cient LRTC algorithm via algorithm unfolding to address
the aforementioned limitations of conventional LRTC algo-
rithms.

3 PROPOSED ALGORITHM—AGTC

We first introduce the notations and definitions used in this
paper. Then, we develop an attention-guided LRTC problem
and an iterative algorithm to solve it. Finally, we construct
a computationally efficient deep network by unfolding the
iterative optimization algorithm.

3.1 Notations and Definitions

We denote tensors by calligraphic Latin or uppercase Greek
letters in bold (e.g., A or Γ), while the non-bold calligraphic
Latin letters are used to denote functions, e.g., Fatt(·). Ma-
trices are denoted by uppercase letters in bold (e.g., A) and
scalars by Latin or Greek letters in italics (e.g., k, N , or λ).

In this work, we focus on the LRTC problem for 3rd-
order tensors, because they are the most common data
formats in image processing and computer vision. For a
3rd-order tensor A ∈ Rn1×n2×n3 , we denote the element
at location (i1, i2, i3) by A(i1, i2, i3), and its i-th horizontal,
lateral, and frontal slices by A(i, :, :), A(:, i, :), and A(:, :, i),
respectively. As we focus on frontal slices in this work, we
denote the i-th frontal slice by A(i) for simplicity.

Next, we introduce the essential tensor operations used
throughout this paper. For unary operations, the ℓ1-norm
∥ · ∥1 and Frobenius norm ∥ · ∥F of a tensor are defined as

∥A∥1 =
∑

i1,i2,i3

|A(i1, i2, i3)|, (2)

∥A∥F =

√ ∑

i1,i2,i3

|A(i1, i2, i3)|2, (3)

respectively. For binary operations, the inner product ⟨·, ·⟩
of two tensors A,B ∈ Rn1×n2×n3 is defined as

⟨A,B⟩ =
∑

i1,i2,i3

A(i1, i2, i3)B(i1, i2, i3). (4)

The tensor-tensor product (t-product) [42] of two tensors
A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 is defined as

A ∗B = fold(bcirc(A)unfold(B)), (5)
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where bcirc(A) ∈ Rn1n3×n2n3 is the block circulant matrix
of A

bcirc(A) =




A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)



, (6)

unfold(B) =
[
B(1);B(2); . . . ;B(n3)

]
∈ Rn1n3×n2 , and fold

is the reverse of unfold, i.e., fold(unfold(B)) = B.
Finally, we denote PΩ : Rn1×n2×n3 7→ Rn1×n2×n3 as the

orthogonal projection of a tensor A ∈ Rn1×n2×n3 onto the
subspace corresponding to the set of observed elements Ω
as

[PΩ(A)](i1, i2, i3) =

{
A(i1, i2, i3), if (i1, i2, i3) ∈ Ω,

0, otherwise.
(7)

3.2 Problem Formulation

We consider a general robust LRTC problem for 3rd-order
tensors, in which an input tensor is decomposed into a target
low-rank tensor and a sparse error component. Specifically,
given an observed data tensor D ∈ Rn1×n2×n3 whose
entries are incomplete and corrupted by noise, the robust
LRTC problem for data recovery can be formulated as

minimize
X ,E

rank(X ) + ∥E∥0
subject to PΩ(X + E) = PΩ(D), (8)

where X is the low-rank tensor to be recovered, E is the
sparse error component, Ω ⊆ [n1]× [n2]× [n3] is the set of
observed entries, and PΩ is the projection defined in (7).

As mentioned in Section 2, several definitions of ten-
sor ranks have been proposed to characterize the low-
rankness of tensors from different aspects. Among the dif-
ferent definitions, we employ the tubal rank, which can
characterize low-rank more effectively than others while
avoiding information loss [13], [42]. However, most of the
existing LRTC algorithms, e.g., [5], [20], [45], employing
tubal rank use t-SVD to compute the tensor norms, which
requires high computational resources. To overcome this
limitation, we employ a tensor factorization strategy [14]
for a low-complexity LRTC. Specifically, the low-rank tensor
X ∈ Rn1×n2×n3 with tubal rank r can be factorized into
the t-product X = L ∗ R, where L ∈ Rn1×r×n3 and
R ∈ Rr×n2×n3 . This strategy avoids the need for SVD to
compute the tensor norms in the LRTC formulations, mak-
ing it computationally more efficient. Furthermore, tensor
factorization prevents changes in the shapes of the input
data and preserves spatial dependencies, which are diffi-
cult to achieve in several conventional algorithms as they
transform the tensors before performing optimization. For
example, LRT-HDR [5] requires images vectorized for use
as input, and HTNN-DCT [60] computes the tensor norm of
flattened tensors. In contrast, the proposed algorithm can
directly process images, making it applicable to a wider
range of applications, e.g., hyperspectral imaging. By enforc-
ing the tubal rank via tensor factorization and relaxing the

ℓ0-norm ∥E∥0 using the ℓ1-norm ∥E∥1, the LRTC problem
in (8) becomes

minimize
L,R,X ,E

1

2
∥L ∗R−X∥2F + λ∥E∥1

subject to PΩ(X + E) = PΩ(D), (9)

where the parameter λ controls the relative importance
between two terms.

Note that the optimization problem in (9) suffers from
the same limitations as conventional LRTC algorithms.
Specifically, the first term ∥L ∗ R − X∥2F , which deter-
mines the recovered tensors, does not consider the spatial
properties and/or dependencies across multiple dimensions
of the recovered tensors, degrading their quality. To ad-
dress this issue, we incorporate an attention mechanism to
improve the integrity of reconstructed tensors by localiz-
ing important regions to preserve multidimensional spatial
dependencies. The tensor factorization in (9) enables the
integration of attention mechanisms because it processes
the original data tensors, whereas norm-based formulations,
e.g., [5], [20], [45], process singular values of data tensors
in the Fourier transform domain, making it intractable to
analyze, interpret, and control the impact of attention on the
reconstructed low-rank tensor. Then, the LRTC formulation
in (9), guided by attention, is rewritten as

minimize
L,R,X ,E

1

2

∥∥
√
Fatt(D)⊙ (L ∗R−X )

∥∥2
F
+ λ∥E∥1

subject to PΩ(X + E) = PΩ(D), (10)

where Fatt(D) ∈ Rn1×n2×n3 is the attention map computed
from the input data tensors using a CNN, and

√ · and
⊙ denote the element-wise square root and multiplication,
respectively. The term ∥L ∗ R − X∥2F is now guided by
CNN-based attention to better preserve the structures of the
original tensor, ensuring faithful tensor restoration. Thus,
the CNN-based attention component mitigates the limita-
tions of norm-based terms that ignore the structures of the
desired tensors.

The tensor factorization model for LRTC in (10) is es-
tablished based on certain assumptions, i.e., low-rankness
and sparseness for X and E , respectively. However, this
model may fail to represent real-world scenarios accurately,
e.g., the original data are only approximately low-rank, or
the errors are effectively dense; these modeling inaccuracies
degrade the restoration accuracy. Therefore, to overcome the
limitations of the models by compensating for the modeling
inaccuracies, we employ two implicit regularization func-
tions, gX : Rn1×n2×n3 7→ R and hE : Rn1×n2×n3 7→ R, for X
and E , respectively. Furthermore, we consider a real-world
data acquisition scenario as similarly done in [5], [61], i.e.,
only a set of entries corrupted by a small amount of noise is
observed by PΩ(D) = PΩ(X +E+N ), where N is a noise
tensor with a noise level ∥PΩ(N )∥F ≤ δ for some δ > 0.
We employ a tensor S of slack variables to compensate for
missing and noisy entries in D. Then, the attention-guided
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LRTC problem in (10) can be rewritten as

minimize
L,R,X ,E,S

1

2

∥∥
√
Fatt(D)⊙ (L ∗R−X )

∥∥2
F

+ λ∥E∥1 + gX (X ) + hE(E)
subject to X + E + S = PΩ(D),

∥PΩ(S)∥F ≤ δ. (11)

3.3 Solution to the Optimization

We solve the optimization problem in (11) using an iterative
algorithm employing the ALM method [62]. Specifically,
we first introduce auxiliary variables G and H for variable
splitting. The optimization in (11) can then be rewritten as

minimize
L,R,X ,E,S,G,H

1

2

∥∥
√
Fatt(D)⊙ (L ∗R−X )

∥∥2
F

+ λ∥E∥1 + gX (G) + hE(H)

subject to G = X ,H = E,
X + E + S = PΩ(D),

∥PΩ(S)∥F ≤ δ. (12)

Then, we define the augmented Lagrangian function L
for (12) as

L(L,R,X ,E,S,G,H,Λ,Γ,Φ)

=
1

2

∥∥
√
Fatt(D)⊙ (L ∗R−X )

∥∥2
F
+ λ∥E∥1

+
µ

2
∥PΩ(D)−X − E − S∥2F

+ ⟨Λ,PΩ(D)−X − E − S⟩
+ gX (G) + α

2
∥X − G∥2F + ⟨Γ,X − G⟩

+ hE(H) +
β

2
∥E −H∥2F + ⟨Φ,E −H⟩ , (13)

where Λ, Γ, and Φ ∈ Rn1×n2×n3 are tensors of Lagrange
multipliers; µ, α, and β > 0 are penalty parameters; and
⟨·, ·⟩ is the tensor inner product defined in (4).

We can obtain the optimal solutions to (12) by minimiz-
ing the augmented Lagrangian function L in (13), i.e.,

(L∗,R∗,X ∗,E∗,S∗,G∗,H∗)

= arg min
L,R,X ,E,S,G,H

L(L,R,X ,E,S,G,H,Λ,Γ,Φ). (14)

As it is intractable to solve the joint optimization problem
in (14) directly, we employ the alternating direction method
of multipliers [63] to split it into subproblems corresponding
to each variable and multiplier. We then solve the sub-
problems separately through iterations. In the following, we
provide a solution for each subproblem at the k-th iteration.

X -subproblem: We first update X as

X k+1 = arg min
X

1

2

∥∥
√
Fatt(D)⊙ (Lk ∗Rk −X )

∥∥2
F

+
µk

2
∥PΩ(D)−X − Ek − Sk∥2F

+ ⟨Λk,PΩ(D)−X − Ek − Sk⟩
+

αk

2
∥X − Gk∥2F + ⟨Γk,X − Gk⟩

= arg min
X

1

2

∥∥
√
Fatt(D)⊙ (Lk ∗Rk −X )

∥∥2
F

+
µk + αk

2
∥X −ΨX ,k∥2F ,

=
Fatt(D)⊙ (Lk ∗Rk) + (µk + αk)ΨX ,k

Fatt(D) + µk1+ αk1
, (15)

where ΨX ,k = (µk+αk)
−1(Λk+µkPΩ(D)−µkEk−µkSk+

αkGk − Γk), 1 is a tensor of all ones, and the division is
element-wise. In Appendix A, we derive the closed-form
solution in (15).

L- and R-subproblems: Then, we update L and R
simultaneously by solving

minimize
L,R

1

2

∥∥
√
Fatt(D)⊙ (L ∗R−X k+1)

∥∥2
F
. (16)

The solutions can be computed efficiently in the Fourier
domain due to the periodic property of bcirc(·) [14].
Specifically, let X̂ k+1 denote a tensor of the Fourier trans-
form coefficients of X k+1 along the third dimension, i.e.,
X̂ k+1(i, j, :) = FFFT{X k+1(i, j, :)}. Then, the closed-form
solutions in the Fourier domain for L̂k+1 and R̂k+1 are
given by those of their frontal slices as

L̂(i)
k+1 = arg min

L̂(i)

1

2n3

∥∥∥
√
F (i)

att(D)⊙
(L̂(i)∗ R̂(i)

k − X̂ (i)
k+1

)∥∥∥
2

F

= X̂ (i)
k+1

(
R̂(i)

k

)H(
R̂(i)

k

(
R̂(i)

k

)H)†
, (17)

R̂(i)
k+1 = arg min

R̂(i)

1

2n3

∥∥∥
√
F (i)

att(D)⊙
(L̂(i)

k ∗ R̂(i)− X̂ (i)
k+1

)∥∥∥
2

F

=
((

L̂(i)
k

)H
L̂(i)

k

)†(
L̂(i)

k

)H
X̂ (i)

k+1, (18)

where AH and A† denote the conjugate transpose and the
pseudo-inverse of matrix A, respectively. Finally, tensors
Lk+1 and Rk+1 can be obtained by performing an inverse
Fourier transform as

Lk+1(i, j, :) = F−1
FFT{L̂k+1(i, j, :)},

Rk+1(i, j, :) = F−1
FFT{R̂k+1(i, j, :)}.

(19)

E-subproblem: Next, we update E as

Ek+1 = arg min
E

λk∥E∥1 + ⟨Λk,PΩ(D)−Xk+1−E−Sk⟩

+
µk

2
∥PΩ(D)−X k+1 − E − Sk∥2F

+
βk

2
∥E −Hk∥2F + ⟨Φk,E −Hk⟩

= arg min
E

λk

µk + βk
∥E∥1 +

1

2
∥E −ΨE,k∥2F

= T λk
µk+βk

(ΨE,k), (20)
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(a) Overall architecture

(b) Architecture of the k-th stage

(c) Architecture of the attention module Fatt

(d) Architecture of the networks FG and FH

Fig. 1. Architecture of the AGTC network. (a) The network consists of K stages and an attention module for attention-guided restoration. (b) Each
stage of the network corresponds to an iteration of the iterative LRTC algorithm. In each stage, the optimization variables are updated in two phases:
the reconstruction phase by closed-form solutions and the regularization phase by CNNs. Architectures of (c) the attention module [64] and (d) the
networks FG and FH [65].

where ΨE,k = (µk + βk)
−1(Λk + µkPΩ(D) − µkX k+1 −

µkSk + βkHk −Φk), and Tτ (A) denotes the element-wise
soft-thresholding operator [66] with parameter τ > 0, i.e.,
[Tτ (A)](i1, i2, i3) = sign(A(i1, i2, i3))·max{|A(i1, i2, i3)|−
τ, 0}.

S-subproblem: We update the tensor of slack variables
S as similarly done in [5], [61]

Sk+1 = arg min
∥PΩ(S)∥F≤δk

µk

2
∥PΩ(D)−X k+1 − Ek+1 − S∥2F

+ ⟨Λk,PΩ(D)−X k+1 − Ek+1 − S⟩
= arg min

∥PΩ(S)∥F≤δk

∥S −ΨS,k∥2F

= PΩC(ΨS,k) + min

{
δk

∥PΩ(ΨS,k)∥F
, 1

}
PΩ(ΨS,k),

(21)

where ΨS,k = PΩ(D) − X k+1 − Ek+1 + µ−1
k Λk. The

derivation of the closed-form solution in (21) is provided
in Appendix B.

G- and H-subproblems: We then update the auxiliary
variables G and H as

Gk+1 = arg min
G

gX (G) + αk

2
∥X − G∥2F + ⟨Γ,X − G⟩

= arg min
G

gX (G) + αk

2
∥G − (X k+1 + α−1

k Γk)∥2F
= proxgX (X k+1 + α−1

k Γk), (22)

Hk+1 = arg min
H

hE(H) +
βk

2
∥E −H∥2F + ⟨Φ,E −H⟩ ,

= arg min
H

hE(H) +
βk

2
∥H− (Ek+1 + β−1

k Φk)∥2F
= proxhE (Ek+1 + β−1

k Φk), (23)

where proxgX (·) and proxhE (·) are the proximal opera-
tors [67] corresponding to regularization functions gX and
hE , respectively. The regularization functions constrain the
variables with specific characteristics to improve the ac-
curacy of solutions, e.g., sparsity [16], smoothness [2], or
statistical priors [3], [17]. However, in pure model-based
algorithms, regularization functions are constructed by ob-
serving a small number of samples, which limits their
generalizability. To address this limitation, we design reg-
ularization functions gX and hE to model a wide range
of characteristics and properties of real-world data. To this
end, we use CNNs to implement proxgX (·) and proxhE (·)
so that they can effectively learn complex visual features
from diverse training data. Let FG and FH be the CNN-
based proximal operators for proxgX (·) and proxhE (·) in (22)
and (23), respectively. Then, the solutions of G- and H-
subproblems can be respectively rewritten as

Gk+1 = FG
(X k+1 + α−1

k Γk;ΘG,k

)
, (24)

Hk+1 = FH
(Ek+1 + β−1

k Φk;ΘH,k

)
, (25)

where ΘG,k and ΘH,k are the parameters of networks FG
and FH at the k-th iteration.
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Multipliers: Finally, the tensors of Lagrange multipliers
are updated as

Λk+1 = Λk + µk(PΩ(D)−X k+1 − Ek+1 − Sk+1),

Γk+1 = Γk + αk(X k+1 − Gk+1),

Φk+1 = Φk + βk(Ek+1 −Hk+1). (26)

3.4 Deep Unfolded Network
Finally, we construct a computationally efficient deep net-
work by unfolding the iterations of the iterative AGTC
algorithm presented in the previous section. Fig. 1 illus-
trates the architecture of the deep network for the proposed
AGTC. The observed data tensor D is first fed into the
attention module to estimate the attention maps Fatt(D)
of the important regions. Because the proposed algorithm
is structure-agnostic, any architecture can be employed for
the attention module. In this work, we employ the attention
module from AHDRNet [64] in Fig. 1(c) for simplicity, which
is defined for a tensor D ∈ Rn1×n2×n3 as

Fatt(D) = Sigmoid(Conv(LeakyReLU(Conv(D)))), (27)

where Sigmoid(·) is the sigmoid activation function,
LeakyReLU(·) is the leaky rectified linear unit, and Conv(·)
is a convolution layer with n3 input and output channels,
3× 3 kernels, a stride of 1, and padding of 1. Therefore, the
output of Fatt(·) has the same dimension as that of D. The
effects of different architectures for the attention module on
the performance will be discussed in Section 4.3.1. Then,
the observed data tensor D and attention maps Fatt(D)
are fed into the deep unfolded network consisting of K
consecutive stages. The operations in each stage in the
network correspond to obtaining solutions in an iteration of
the proposed iterative AGTC algorithm. Specifically, in each
stage, the optimization variables, i.e., tensors, are updated
in two phases: reconstruction and regularization.

First, variables X , E , S, G, and H and the Lagrange
multipliers Λ, Γ, and Φ are initialized to zero tensors, while
L and R are initialized as tensors of 10−2. Then, variables
X ,L,R,E, and S are updated in the reconstruction phase
by the closed-form solutions in (15), (17), (18), (20), and
(21), respectively. The solution for X k+1 in (15) is compu-
tationally expensive as it requires the t-product Lk ∗ Rk,
which involves time- and memory-consuming operations,
i.e., bcirc(·) and unfold(·). To overcome this issue, we
exploit the properties of the Fourier transform to efficiently
compute X k+1 as in [14]. More specifically, let Y = Lk∗Rk,
and first compute the Fourier transform along the third
dimension of Lk and Rk; then, the i-th slice of the t-product
in the Fourier domain is given by

Ŷ(i)
= L̂(i)

k R̂(i)
k . (28)

Because the slices can be computed independently, we per-
form parallel processing to reduce execution time. Finally,
we obtain the t-product by performing an inverse Fourier
transform on Ŷ , i.e.,

Y(i, j, :) = F−1
FFT{Ŷ(i, j, :)}. (29)

Next, auxiliary variables G and H are updated in the
regularization phase by the CNNs in (24) and (25), re-
spectively. Similar to Fatt(·), any architecture can be used

because the CNNs FG and FH are structure-agnostic. Also,
note that, as the proposed AGTC takes tensors of the orig-
inal shape as input, the CNNs FG and FH can effectively
learn the spatial dependencies. In this work, for simplicity,
we employ a residual dense block (RDB) [65]. Fig. 1(d)
shows the architecture of the networks FG and FH. Specifi-
cally, it comprises an RDB and two convolution layers. The
RDB has 64 initial feature maps, a growth rate of 32, and N
convolution layers. The first convolution layer has n3 input
and 64 out channels, 3×3 kernels, a stride of 1, and padding
of 1, while the last convolutional layer has 64 input and n3

output channels.
In addition to the CNNs’ parameters ΘG,k and ΘH,k,

the penalty parameters µk in (15), (20), and (21), αk in (15)
and (22), βk in (20) and (23), λk in (20), and the noise level
δk in (21) are also learned from the data, i.e., implemented
as trainable parameters and adjusted by backpropagation
during training. Finally, the output of the last stage is the
reconstructed low-rank tensor, i.e., X ∗ = XK .

4 EXPERIMENTAL RESULTS

We evaluate the performance of the proposed AGTC algo-
rithm in two applications—HDR imaging and HSI restora-
tion. For reproducibility, we provide the source code and
pretrained models on our project website.1

4.1 HDR Imaging

4.1.1 Settings
In this experiment, we apply the proposed AGTC algorithm
to HDR imaging, in which multiple low dynamic range
(LDR) images are fused to synthesize single HDR images
without ghosting artifacts. We evaluate the performance of
the AGTC and competing algorithms using the HDM-HDR
dataset [73] preprocessed in [5], which contains 187 image
sets—132 for training and 55 for testing. Each set contains
three images with exposure biases of {−3, 0,+3}, of which
the middle image is the reference.

Given a set of three LDR images {I1,I2,I3}, Ii ∈
Rn1×n2×3, we first convert the pixel values of Ii to the
irradiance values using the gamma correction function as

Hi =
Iγ

i

ti
, i = 1, 2, 3, (30)

where ti is the exposure time of the i-th LDR image, and
we set γ = 2.2 for consistency with previous works [5], [64],
[68], [69], [70], [71]. Then, we align Hi with the reference
image using SIFT-Flow [74] and concatenate them along the
color channel dimension to construct the input data tensor
D ∈ Rn1×n2×9. We define the set of observed entries as
Ω = Ω1 ∩Ω2, where

Ω1 = {(j, k, l)|0.01 ≤ Ii(j, k, l) ≤ 0.99}, (31)

Ω2 = {(j, k, l)|SSIM(H′
i(j, k, l),H′

ref(j, k, l)) ≥ 0.90} (32)

are the sets of well-exposed and well-aligned pixels, respec-
tively; SSIM(·) denotes the pixel-wise structural similarity
index (SSIM) [75], and H′

i denotes the aligned images.

1https://github.com/mtntruong/AGTC
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TABLE 1
Quantitative evaluation of HDR image synthesis performance on the HDM-HDR dataset. The ↑ and ↓ symbols denote “higher is better” and “lower

is better,” respectively. For each metric, the boldfaced and underlined numbers denote the best and the second-best results, respectively.

µ-PSNR (↑) PU21-PSNR (↑) PU21-MSSSIM (↑) PU21-VSI (↑) HDR-VDP (Q) (↑) HDR-VDP (P ) (↓)

TNNM-ALM [61] 33.68 28.30 0.9723 0.9851 57.28 0.3772
K. and R. [68] 38.21 30.19 0.9917 0.9819 57.58 0.2211
Wu et al. [69] 43.49 40.75 0.9984 0.9979 66.36 0.2520
AHDRNet [64] 40.10 38.27 0.9979 0.9970 64.18 0.4456
ADNet [70] 47.61 42.01 0.9991 0.9982 66.90 0.0457
Mai et al. [71] 48.94 41.08 0.9984 0.9981 66.84 0.0339
LRT-HDR [5] 49.54 41.98 0.9991 0.9984 68.11 0.0273
CA-ViT [72] 49.53 42.18 0.9992 0.9981 68.68 0.0252
Proposed (AGTC) 50.09 42.86 0.9993 0.9987 69.20 0.0187

Tensors D and PΩ(D) are then fed into the proposed
deep unfolded network with K = 10 stages. The CNN-
based proximal operators, FG and FH, are both constructed
using RDBs with N = 8 convolutional layers. We set the
desired tubal rank to r = 3, the number of color channels.
A 1 × 1 convolution layer with nine input channels and
three output channels is used at the end of the network to
synthesize the final HDR image H∗ ∈ Rn1×n2×3 from the
output tensor X ∗ ∈ Rn1×n2×9.

We use the settings in [5] to train the proposed AGTC
algorithm for HDR imaging. Specifically, we employ the
losses in rank fidelity and synthesis fidelity, which are
computed in the perceptually uniform (PU) domain [76] as

L = 0.5Lrank + 0.5Lsyn

= 0.5∥l(X ∗)− l(Concat(Hgt,Hgt,Hgt))∥1
+ 0.5∥l(H∗)− l(Hgt)∥1, (33)

where l(·) denotes the luma function that maps the irradi-
ance values to the PU domain [76]. The training samples are
constructed by randomly cropping 256 × 256 patches from
the images in the training dataset without augmentation. We
use the Adam optimizer [77] for 50 epochs with an initial
learning rate of η = 10−5. We decrease the learning rate by
a factor of 0.1 at every tenth epoch.

We compare the performance of AGTC in HDR syn-
thesis with those of TNNM-ALM [61], Kalantari and Ra-
mamoorthi’s algorithm [68], Wu et al.’s algorithm [69], AH-
DRNet [64], ADNet [70], Mai et al.’s algorithm [71], LRT-
HDR [5], and CA-ViT [72]. The results of the competing
algorithms were obtained using the implementations pro-
vided by the respective authors with default settings. For
qualitative comparison, the HDR images are tone-mapped
using Reinhard and Devlin’s algorithm [78]. For a quan-
titative comparison, we employ six metrics for HDR im-
ages: PSNR in the tone-mapped domain using µ-law [68]
(µ-PSNR), PSNR, multi-scale SSIM, visual saliency-based
index in the PU domain (PU21-PSNR, PU21-MSSSIM, PU21-
VSI) [79], quality score Q and probability score P from the
HDR visible difference predictor (HDR-VDP-Q and HDR-
VDP-P) [80]. HDR-VDP scores are computed with the pa-
rameters of a 24-inch display and 0.5 m viewing distance.

4.1.2 Evaluation
Table 1 quantitatively compares the HDR synthesis per-
formance of the algorithms on the HDM-HDR dataset.

The proposed algorithm outperforms the conventional al-
gorithms in all metrics. Specifically, the proposed algorithm
achieves 0.55 and 0.68 dB higher µ-PSNR and PU21-PSNR
scores than the second-best algorithms LRT-HDR [5] and
CA-ViT [72], respectively, indicating that the HDR images
synthesized by AGTC are the most faithful to the ground-
truths. Furthermore, the proposed algorithm provides the
best PU21-MSSSIM and PU21-VSI scores, indicating that
the textures of the restored HDR images are most similar
to the ground-truths with minimal differences. Finally, the
proposed algorithm achieves the highest HDR-VDP (Q) and
the lowest HDR-VDP (P ) scores, 0.52 higher and lower
by 0.0065, respectively, than the second-best algorithm CA-
ViT [72], implying that the HDR images synthesized by the
proposed algorithm show the lowest perceptual differences
with the ground-truths.

Fig. 2 compares the synthesized HDR images obtained
by each algorithm for the 13th image set, in which the
over-exposed regions in the reference image are occluded,
as shown in the red and blue rectangles in Fig. 2(a). In
Fig. 2(b), TNNM-ALM [61] produces artifacts because its
formulation does not contain regularization functions, yield-
ing information loss in large regions. In Fig. 2(c), Kalantari
and Ramamoorthi’s algorithm [68] fails to restore over-
exposed regions because their network learns the blending
weights of aligned images, which may fail when the aligned
images do not contain sufficient information. Wu et al.’s
algorithm [69] and AHDRNet [64] in Figs. 2(d) and (e),
respectively, lose the over-exposed details in the red and
green rectangles and yield noticeable artifacts in the blue
rectangles. ADNet [70] in Fig. 2(f) produces better results;
however, the details of the light bulbs are lost because the
CNNs fail to extract useful visual features for inference from
the occluded regions. Mai et al.’s algorithm [71] and LRT-
HDR [5] in Figs. 2(g) and (h), respectively, yield distinctive
vertical patterns in the red rectangles because neither of
their formulations considers the structure of the original
data. In Fig. 2(i), CA-ViT [72] fails to restore the textures
and colors of the light bulbs and produces visible artifacts
because it relies heavily on the learned features, and the
occluded regions prevent it from extracting useful features
for accurate inference. In contrast, the proposed algorithm in
Fig. 2(j) synthesizes an HDR image that is the most similar
to the ground-truth; this is because the proposed attention-
guided low-rank model effectively preserves the original
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(a)

(b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 2. Comparison of results for the 13th image of the HDM-HDR
dataset. (a) LDR inputs and result of the proposed algorithm. The
magnified regions marked by red, blue, and green rectangles of the
synthesized results of (b) TNNM-ALM [61], (c) Kalantari and Ramamoor-
thi [68], (d) Wu et al. [69], (e) AHDRNet [64], (f) ADNet [70], (g) Mai et
al. [71], (h) LRT-HDR [5], (i) CA-ViT [72], (j) the proposed algorithm, and
(k) ground-truth.

structure of the data tensor and provides a robust constraint
for handling occlusions.

Fig. 3 compares the synthesized HDR images for the 5th
image set obtained by each algorithm, in which the states
of the light bulbs change rapidly between exposures. The
light bulbs are over-exposed or turned off in all exposures,
resulting in complete information loss in large regions. Con-
sequently, TNNM-ALM and Kalantari and Ramamoorthi’s
algorithm in Figs. 3(b) and (c), respectively, inaccurately
restore the colors and textures of the light bulbs. This is
because TNNM-ALM lacks regularizers to compensate for
information loss, whereas the blending approach of Kalan-
tari and Ramamoorthi’s algorithm fails when the images
contain insufficient information. The pure CNN-based algo-
rithms fail to synthesize high-quality images because they
cannot extract useful visual features from scenes with rapid

(a)

(b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 3. Comparison of results for the 5th image of the HDM-HDR
dataset. (a) LDR inputs and result of the proposed algorithm. The
magnified regions marked by red rectangles of the synthesized results
of (b) TNNM-ALM [61], (c) Kalantari and Ramamoorthi [68], (d) Wu et
al. [69], (e) AHDRNet [64], (f) ADNet [70], (g) Mai et al. [71], (h) LRT-
HDR [5], (i) CA-ViT [72], (j) the proposed algorithm, and (k) ground-truth.

changes. For example, Wu et al.’s algorithm in Fig. 3(d)
produces severe artifacts. Although AHDRNet and ADNet
provide better results, as shown in Figs. 3(e) and (f), re-
spectively, the colors and textures still differ significantly
from those of the ground-truth. The results of Mai et al.’s
algorithm and LRT-HDR in Figs. 3(g) and (h), respectively,
exhibit vertical patterns caused by the lack of consideration
of the original tensor structures. CA-ViT in Fig. 3(i) yields se-
vere artifacts in the red light bulbs because the transformer
architecture fails to capture the spatial dependencies due
to the rapid changes in the light bulbs. By contrast, the
proposed algorithm successfully restores the HDR image
with the most faithful colors and textures, similar to the
ground-truth.

4.2 Hyperspectral Image Restoration
4.2.1 Settings
In this experiment, we apply the proposed AGTC algorithm
to HSI restoration, which aims to recover HSIs degraded by
stripe noise or missing data. We evaluate the performance
of AGTC and competing algorithms using the Pavia Univer-
sity [87] and Landsat 7 ETM+ [88] datasets.

• Pavia University [87] (synthetic data): It contains an HSI
with a size of 610×340×103. We use the settings in [84]
to construct training and test samples. Specifically, we
crop the top-left 256 × 256 × 103 pixels of the original
HSI; then, we randomly select and independently add
stripe noise to 50 percent of the image columns in each
band to synthesize a degraded test image. In addition,
the 50th, 51st, 100th, and 200th columns of all the
bands are discarded to simulate complete data loss.
To construct training data, we randomly crop 64 × 64
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TABLE 2
Quantitative evaluation of HSI restoration performance on the Pavia University and the Landsat 7 ETM+ datasets.

Pavia University Landsat 7 ETM+
PSNR (↑) SSIM (↑) ERGAS (↓) SAM (↓) PSNR (↑) SSIM (↑) ERGAS (↓) SAM (↓)

DHP [81] 40.83 0.9718 39.4249 0.0449 40.25 0.9487 31.8698 0.0149
T3SC [82] 40.80 0.9886 38.3141 0.0464 38.91 0.9589 30.3982 0.0110
HTNN-DCT [60] 32.37 0.9059 93.9259 0.0999 42.07 0.9684 27.5952 0.0058
TV-WRT [83] 36.82 0.9593 58.6665 0.0533 38.44 0.9419 44.4469 0.0091
MGLRTA [84] 41.91 0.9844 34.1100 0.0302 41.85 0.9688 27.8182 0.0058
LNOP [85] 31.46 0.9229 109.4982 0.0872 39.25 0.9523 33.6259 0.0073
LPRN [86] 40.67 0.9794 41.8059 0.0318 40.85 0.9615 30.4398 0.0065
Proposed (AGTC) 42.83 0.9923 31.3981 0.0285 42.26 0.9724 27.0021 0.0063

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 4. Comparison of results on the Pavia University dataset. (a) Input and restored results of (b) DHP [81], (c) T3SC [82], (d) HTNN-DCT [60],
(e) TV-WRT [83], (f) MGLRTA [84], (g) LNOP [85], (h) LPRN [86], (i) the proposed algorithm, and (j) ground-truth. The second and third rows show
the magnified regions marked by the red rectangle in the first row and their error maps, respectively. The pseudocolor images are synthesized from
the 33rd, 75th, and 68th bands.

patches from the remainder of the original HSI and then
add stripe noise in the same way.

• Landsat 7 ETM+ [88] (real data): It contains two pairs
of HSIs—one pair for training and one pair for testing
with sizes of 1501×1401×8 and 512×512×8, respec-
tively. Each pair contains a degraded HSI exhibiting
oblique data gaps due to scan line corrector failure and
a ground-truth HSI. As the degradation is due to a real-
world failure, we regard this as a real-world dataset.
We randomly crop 256× 256 patches from the training
pairs to construct the training data.

For both experiments, we augment training samples by
randomly flipping and rotating them. The degraded tensors
D and PΩ(D) are fed into the deep unfolded network with
K = 10 stages. We use RDBs with N = 8 and N = 6
convolutional layers for the CNN-based proximal operators
FG and FH, respectively, to provide the best quantitative
performance. We set the desired tubal rank to r = 10 and
r = 2 for the Pavia University and Landsat 7 ETM+ datasets,
respectively, as suggested by the ratio between the tubal
rank and the number of spectral bands in [89]. We define
the loss function as the ℓ1-norm between the output tensor
and the ground-truth. The Adam optimizer is used to train
the network for 100 epochs with an initial learning rate of
η = 10−5, which is decreased by a factor of 0.1 at every
twentieth epoch.

We compare the performance of AGTC in HSI restoration
with those of DHP [81], T3SC [82], HTNN-DCT [60], TV-
WRT [83], MGLRTA [84], LNOP [85], and LPRN [86]. The
results of the competing algorithms were obtained using the
implementations provided by the respective authors with
default settings. For qualitative comparison, we show pseu-
docolor images composed of three representative bands.
For a quantitative comparison, we employ four metrics for
the HSI restoration: PSNR, SSIM [75], dimensionless global
relative error of synthesis (ERGAS) [90], and spectral angle
mapper (SAM) [91].

4.2.2 Evaluation

Table 2 quantitatively compares the HSI restoration perfor-
mances of the algorithms on the Pavia University and Land-
sat 7 ETM+ datasets. The proposed algorithm outperforms
conventional algorithms by large margins in terms of PSNR,
SSIM, and ERGAS on both datasets while achieving the
highest and second-highest SAM scores on the Pavia Uni-
versity and Landsat 7 ETM+ datasets, respectively. For both
datasets, the proposed algorithm achieves the highest PSNR
and SSIM scores, indicating that the HSIs recovered by the
proposed algorithm are the most similar to the ground-
truths. The ERGAS metric computes the normalized average
error of each band in the restored images; thus, the highest
ERGAS scores of the proposed algorithm for both datasets
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 5. Comparison of results on the Landsat 7 ETM+ dataset. (a) Input and restored results of (b) DHP [81], (c) T3SC [82], (d) HTNN-DCT [60],
(e) TV-WRT [83], (f) MGLRTA [84], (g) LNOP [85], (h) LPRN [86], (i) the proposed algorithm, and (j) ground-truth. The second and third rows show
the magnified regions marked by the red rectangle in the first row and their error maps, respectively. The pseudocolor images are synthesized from
the 3rd, 5th, and 8th bands.

indicate that it can faithfully restore all HSI bands. The SAM
metric computes the angle differences between spectra to
measure their similarity. The proposed algorithm achieves
the highest SAM on the Pavia University dataset and the
second-highest SAM on the Landsat 7 ETM+ dataset; how-
ever, the difference is marginal. The quantitative evaluation
confirms the effectiveness of the proposed algorithm over
conventional algorithms for HSI restoration.

Fig. 4 compares the restored HSIs obtained by each
algorithm for the Pavia University dataset. The pseudocolor
images are synthesized from the 33rd, 75th, and 68th bands.
DHP [81] and T3SC [82] in Figs. 4(b) and (c), respectively,
produce better results than the conventional algorithms.
The restored HSIs are close to the ground-truth without
noticeable degradation. However, the restored details in the
complete loss regions are still not faithful to the ground-
truth, as shown in the error maps. HTNN-DCT [60] in
Fig. 4(d) yields a blurry result with severe artifacts. TV-
WRT [83], MGLRTA [84], LNOP [85], and LPRN [86] fail
to recover the information in the complete loss regions,
resulting in artifacts in the form of strong vertical lines, as
shown in Figs. 4(e)–(h). In contrast, the proposed algorithm
in Fig. 4(i) successfully restores the HSI with the most
faithful textures compared to the ground-truth, including
information in the complete loss regions.

Fig. 5 compares the restored HSI obtained by each al-
gorithm for the Landsat 7 ETM+ dataset. The pseudocolor
images are synthesized from the 3rd, 5th, and 8th bands for
illustration. T3SC, HTNN-DCT, TV-WRT, MGLRTA, LNOP,
and LPRN in Figs. 5(c)–(h) fail to recover information in the
data gap regions, resulting in severe texture degradation.
DHP in Fig. 5(b) yields a better result, indicating that it
is more similar to the ground-truth. However, the restored
HSI still exhibits visibly distorted textures, which degrades
its quality. By contrast, the HSI recovered by the proposed
algorithm is the most natural and yields minimal visual
differences from the ground-truth, as shown in Fig. 5(i).
This comparison demonstrates the effectiveness of the pro-
posed attention-guided formulation in preserving the origi-
nal structures of the tensors.

TABLE 3
Effects of different modules for Fatt on the synthesis performance.

Fatt µ-PSNR PU-PSNR PU-MSSSIM PU-VSI # Param.

None 48.71 41.83 0.9990 0.9984 8.73M
None (RDB-10) 49.58 42.14 0.9991 0.9985 12.69M
None (RDB-12) 49.43 42.41 0.9991 0.9986 17.38M
AHDRNet [64] 50.09 42.86 0.9993 0.9987 8.74M
CBAM [92] 51.22 43.64 0.9993 0.9988 8.74M
FFA [93] 50.75 43.07 0.9991 0.9986 8.74M
SimAM [94] 51.62 43.97 0.9993 0.9989 8.75M

4.3 Model Analysis

In this section, we perform ablation studies to analyze
the effects of Fatt, the network structures of FG and FG ,
the number of unfolded iterations K , and the quantity of
training data on the performance of the proposed algorithm
in HDR imaging. We also analyze the computational com-
plexity.

4.3.1 Learned Attention Fatt

We analyze the effects of the attention Fatt on preserving
the structure of the original data tensors. Table 3 quanti-
tatively compares the HDR synthesis performances of the
proposed algorithms with different modules for Fatt. First,
the proposed AGTC algorithm with the attention module
from AHDRNet [64] significantly improves scores by large
margins in all metrics. Second, more sophisticated attention
modules, CBAM [92], FFA [93], and SimAM [94], provide
better performances at the expense of increased complexity.
Third, instead of using the attention module, increasing the
number of convolutional layers N in the RDB in FG and FH
to 10 and 12 (RDB-10 and RDB-12), respectively, improves
the synthesis performance by increasing the amount of
learned information, thus compensating for the lack of the
attention module. However, despite the significant increase
in the number of parameters, the performance remains
inferior to using the attention module. The results confirm
the effectiveness of the attention mechanism for attention-
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(a) (b) (c)

Fig. 6. Effects of the attention-guided formulation for LRTC. (a) Ground-
truth, and the synthesized results (b) without Fatt and (c) with Fatt.

(a) (b) (c)

Fig. 7. Visualization of attention maps. LDR images (top row) and their
corresponding attention maps (bottom row) of (a) short, (b) medium, and
(c) long exposures.

guided LRTC and demonstrate that the proposed AGTC
requires simple architectures to achieve state-of-the-art per-
formance. In addition, the choice of the attention module
significantly affects the performance. Therefore, the architec-
ture of the attention module can be selected adaptively de-
pending on applications or design choices, e.g., the trade-off
between performance and computational cost. In this work,
we employ the attention module from AHDRNet [64] as the
baseline for its conceptual simplicity and to demonstrate the
effectiveness of the attention mechanism for LRTC.

Fig. 6 qualitatively compares HDR synthesis results ob-
tained using different settings. As shown in Fig. 6(b), the
reconstructed HDR image without the attention mechanism
exhibits severe color and texture artifacts, whereas the at-
tention Fatt improves the visual quality, producing more
accurate results in Fig. 6(c). Both quantitative and qualitative
comparisons confirm the effectiveness of the attention mech-
anism Fatt in improving the performance of LRTC. Next,
we analyze the effectiveness of the attention mechanism by
visualizing attention maps. Fig. 7 compares the input LDR
images and their corresponding attention maps estimated
by Fatt. The attention maps exhibit higher values at well-
exposed regions in each LDR image, e.g., the light bulbs in
the short exposure in Fig. 7(a) and the background in the
long exposure in Fig. 7(c). This implies that the optimiza-
tion process focuses more on reconstructing those salient
regions, thereby preserving textures and details across all

TABLE 4
Effects of architectures for FG and FH on the synthesis performance.

µ-PSNR PU-PSNR PU-MSSSIM PU-VSI # Param.

RDB [65] 50.09 42.86 0.9993 0.9987 8.74M
Conv+ReLU [5] 49.93 43.18 0.9993 0.9987 18.11M

UNetRes [55] 50.28 42.58 0.9993 0.9986 40.85M

TABLE 5
Effects of the numbers of convolutional layers in the RDB in FG and

FH on the synthesis performance in PU21-PSNR.

FG FH 6 7 8 9 10

6 42.11 42.19 41.12 41.97 41.94
7 41.37 42.32 41.66 42.69 42.45
8 42.52 42.18 42.86 41.48 42.35
9 41.85 41.46 41.90 42.84 41.55

10 41.52 42.87 40.57 40.67 41.93

exposures, leading to accurate synthesis.

4.3.2 Network Structures of FG and FH
As mentioned in Section 3.4, any architecture can be used
for the CNN-based regularizers FG and FH. We analyze
the effects of their structures on performance by using
three commonly used networks as regularizers: the prox-
imal operator in LRT-HDR [5], which comprises a series
of convolution and ReLU layers (Conv+ReLU), RDB [65],
and UNetRes [55]. Table 4 shows that the performance
differences among different architectures are insignificant,
despite differences in complexity. Specifically, although the
RDB provides the best overall performance, albeit with
marginal gains, it requires the smallest number of network
parameters. Therefore, we use the RDB in this work for the
best performance and complexity trade-off.

Next, we analyze the impact of the architectures of the
RDB on the performance by training the network with dif-
ferent combinations of numbers of convolutional layers N in
the RDB in FG and FH. Table 5 shows that the performance
of the proposed network is significantly affected by the
numbers of parameters in RDBs. In general, as the number
of convolutional layers in the RDB increases, the amount
of learned information increases, which consequently im-
proves performance. However, if we continue to increase the
number of learnable parameters by increasing the number of
convolutional layers in RDBs, the training process becomes
difficult to converge, degrading the synthesis performance.
Therefore, for HDR imaging, we construct both FG and
FH using both RDBs with eight convolutional layers to
facilitate a graceful trade-off between performance and com-
putational cost.

4.3.3 Unfolded Iteration
We analyze the effects of the number of stages K on perfor-
mance. As shown in Table 6, when K = 5, the algorithm
provides the worst performance because the amount of
visual features learned by the CNN-based regularizers is in-
sufficient for faithful synthesis. As K increases, the amount
of learned visual information increases, thereby improving
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TABLE 6
Effects of unfolded iteration numbers on the synthesis performance.

K µ-PSNR PU21-PSNR PU21-MSSSIM PU21-VSI HDR-VDP (Q)

5 48.14 40.77 0.9988 0.9980 67.63
10 50.09 42.86 0.9993 0.9987 69.20
15 49.75 42.93 0.9992 0.9987 69.16
20 49.16 42.55 0.9990 0.9986 69.00

TABLE 7
Comparison of approximate numbers of training samples and

augmentation.

# Training Samples Aug.

Kalantari and Ramamoorthi [68] 2,000,000 ✓
Wu et al. [69] 120,000 ✓
AHDRNet [64] 120,000 ✓
ADNet [70] 120,000 ✓
Mai et al. [71] 66,000 ✓
LRT-HDR [5] 13,000
CA-ViT [72] 50,000 ✓
Proposed (AGTC) 13,000

the synthesis performance. However, if we further increase
K , the number of parameters in the CNN-based regular-
izers increases proportionally, hindering the convergence
of the training process. As a result, the performance of
the proposed algorithm gradually decreases. Therefore, we
determined K = 10 to achieve the best trade-off between
performance and computational and memory complexities.

4.3.4 Quantity of Training Data
Table 7 compares the approximate numbers of training sam-
ples and whether augmentation is applied for the learning-
based algorithms. All conventional algorithms, except for
LRT-HDR [5], employ data augmentation, thereby con-
structing large numbers of training samples. Although the
proposed AGTC uses the fewest number of training samples
without augmentation, it achieves the best performance, as
discussed in Section 4.1. This implies that since the proposed
AGTC is based on the theoretical foundation of the low-
rank model, it only requires a minimal amount of learned
information.

We analyze the impact of the quantity of training data
on the performance by training the network using differ-
ent quantities of data. Fig. 8 quantitatively compares the
PU21-PSNR performance. As the quantity of training data
increases, the synthesis performance improves. Specifically,
when only 50% of the training data is used, the proposed
algorithm outperforms Kalantari and Ramamoorthi’s algo-
rithm [68], Wu et al.’s algorithm [69], and AHDRNet [64].
The proposed algorithm outperforms all the competing
algorithms when using 60% or more of the training data
except at 80%. This is because outlier samples are included
in the training data when we increase the quantity from 70%
to 80%; however, their effects gradually decrease as more
training samples are added. This ablation study confirms
that the proposed AGTC is less dependent on training data
and thus necessitates minimal learned information because
of its theoretical foundation from the low-rank model.

Fig. 8. Quantitative comparison for different quantities of training data.
The blue line indicates the PU21-PSNR score of the second-best algo-
rithm CA-ViT [72].

TABLE 8
Comparison of the average runtimes in seconds and the number of

parameters.

Runtime # Param. (M)

TNNM-ALM [61] 20.07 -
Kalantari and Ramamoorthi [68] 0.25 0.38
Wu et al. [69] 0.22 16.61
AHDRNet [64] 0.76 1.51
ADNet [70] 1.19 2.96
Mai et al. [71] 59.27 17.75
LRT-HDR [5] 16.20 17.83
CA-ViT [72] 3.44 1.22
Proposed (AGTC) 3.56 8.74

4.3.5 Computational Complexity

We evaluate the computational complexity of the algorithms
by comparing the average runtimes for synthesizing 55 test
HDR images of size 1820×980 from the HDM-HDR dataset.
In this test, we use a PC with a 3.8 GHz CPU and an
Nvidia RTX 3090 GPU. Table 8 compares the results. First,
the proposed algorithm is computationally more efficient
than Mai et al.’s algorithm [71] and LRT-HDR [5], which are
CNN-aided low-rank matrix and tensor completion algo-
rithms, respectively; this is because the proposed algorithm
employs tensor factorization instead of the computationally
expensive SVD for the tensor norm. Second, compared
with pure CNN-based algorithms [64], [68], [69], [70], [72],
the proposed algorithm is slower because it still requires
complex operations, such as the Fourier transform, which
are slower than pure convolution operations. Neverthe-
less, the proposed algorithm is comparable to CA-ViT [72]
in terms of runtime. Table 8 also compares the number
of parameters of the learning-based algorithms. The pro-
posed algorithm requires fewer parameters than the other
rank minimization-based algorithms [5], [71] because of its
theoretically more thorough formulation for the attention-
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guided LRTC, leading to simpler CNNs for regularizers.
Although the number of parameters of the proposed AGTC
is higher than those of Kalantari and Ramamoorthi’s algo-
rithm [68], AHDRNet [64], ADNet [70], and CA-ViT [72],
we experimentally show that the proposed AGTC provides
significantly better performance.

5 CONCLUSIONS

We proposed an attention-guided low-rank tensor com-
pletion (AGTC) algorithm to faithfully restore the original
structures of data tensors via deep unfolding attention-
guided tensor factorization. We first formulated the low-
rank tensor completion task as a robust factorization prob-
lem based on low-rank and sparse error assumptions. Low-
rank tensor recovery was guided by a CNN-based attention
mechanism that localizes important regions to preserve mul-
tidimensional spatial dependencies, ensuring more faithful
tensor restoration. We also developed implicit regulariz-
ers to compensate for the modeling inaccuracies. We then
solved the optimization problem by employing an iterative
technique to obtain closed-form solutions. Finally, we de-
signed a multistage deep network by unfolding the iterative
optimization algorithm, where each stage of the network
corresponds to an iteration of the iterative algorithm. Exper-
imental results demonstrated that the proposed algorithm
provides state-of-the-art performance on HDR imaging and
HSI restoration tasks. Some important directions for future
work are to develop accurate low-rank tensor completion
models for higher-order tensors [46], [47] and extend the
attention-guiding strategy to other definitions of tensor rank
for better generalization.

APPENDIX A
DERIVATION OF THE SOLUTION IN (15)
Since the cost in (15) is quadratic, i.e., convex, we differenti-
ate it with respect to X and set it to 0, i.e.,

∂

∂X
(
1

2

∥∥
√
Fatt(D)⊙ (Lk ∗Rk −X )

∥∥2
F

+
µk + αk

2
∥X −ΨX ,k∥2F

)

= −
√
Fatt(D)⊙

(√
Fatt(D)⊙ (Lk ∗Rk −X )

)

+ (µk + αk)(X −ΨX ,k) = 0 (34)
⇔ (Fatt(D) + µk1+ αk1)⊙X

= Fatt(D)⊙ (Lk ∗Rk) + (µk + αk)ΨX ,k. (35)

Since each element of X on the left-hand side of (35) is
multiplied by a scalar value

(
[Fatt(D)](i1, i2, i3)+µk+αk

)
,

we obtain the closed-form solution in (15) by performing
element-wise division.

APPENDIX B
DERIVATION OF THE SOLUTION IN (21)
The optimization problem in (21) can be reformulated as

minimize
S

∥S −ΨS,k∥2F
subject to ∥PΩ(S)∥F ≤ δk.

(36)

We solve this problem by using Theorem 1 from [61]. For
the elements (i1, i2, i3) /∈ Ω, the solution is given by

PΩC(Sk+1) = PΩC(ΨS,k), (37)

since it is apparent that Sk+1(i1, i2, i3) = ΨS,k(i1, i2, i3).
For the elements (i1, i2, i3) ∈ Ω, we first denote Z = PΩ(S)
and W = PΩ(ΨS,k) for simpler notations. Then, the opti-
mization in (36) can be rewritten as

minimize
Z

∥Z −W∥2F
subject to ∥Z∥2F ≤ δ2k.

(38)

We define the Lagrangian function for (38) as

L(Z, ν) = ∥Z −W∥2F + ν(∥Z∥2F − δ2k),

where ν is the Lagrange multiplier for the constraint. Then,
the optimal Z can be obtained by solving the Karush-Kuhn-
Tucker conditions [95], i.e.,

∥Z∥F − δk ≤ 0, (39)
ν ≥ 0, (40)

ν(∥Z∥F − δk) = 0, (41)
(1 + ν)Z −W = 0, (42)

where 0 is the zero tensor. By substituting Z from (42)
into (41), we obtain

ν(∥Z∥F − δk) =
ν

1 + ν
{∥W∥F − (1 + ν)δk} = 0. (43)

We consider two cases.
Case 1: ∥W∥F < δk. Then, ∥W∥F − (1 + ν)δk < 0, and

thus ν = 0 from (40). Therefore, we have Z = W .
Case 2: ∥W∥F ≥ δk. In this case, ∥W∥F − (1 + ν)δk = 0.

Then, from (42), we have Z = δk
∥W∥F

W .
By combining the two cases, we obtain the optimal Z as

Z = PΩ(Sk+1) = min

{
δk

∥PΩ(ΨS,k)∥F
, 1

}
PΩ(ΨS,k).

(44)
Since Sk+1 = PΩC(Sk+1) + PΩ(Sk+1), from (37) and (44),
we obtain the solution in (21).
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